数学解题策略选讲(第2版)/高等学校教材

数学解题策略选讲(第2版)/高等学校教材 pdf epub mobi txt 电子书 下载 2026

出版者:
作者:
出品人:
页数:0
译者:
出版时间:
价格:0
装帧:
isbn号码:9787560381138
丛书系列:
图书标签:
  • 数学方法论
  • 数学
  • 解题技巧
  • 高等教育
  • 教材
  • 数学分析
  • 微积分
  • 大学数学
  • 学习指南
  • 问题解决
  • 策略
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

数学解题策略选讲(第2版)/高等学校教材 作者:[作者姓名] 出版社:[出版社名称] 出版日期:[出版日期] ISBN:[ISBN号] 内容简介: 《数学解题策略选讲(第2版)》是一部面向高等学校学生的数学专著,旨在系统性地梳理、讲解和提升读者在解决各类数学问题时所需的关键策略与技巧。本书凝聚了作者多年的教学与研究经验,紧密结合当前高等教育的教学要求和学术前沿,力求为学习者提供一个深入理解数学思维、掌握高效解题方法、培养创新解题能力的有效平台。 本书第二版在第一版的基础上,进行了全面的修订和完善。内容上,更加聚焦于数学解题的核心思想和普适性方法,删减了部分过于偏重具体技巧而缺乏共性的内容,增加了更多具有启发性和代表性的例题,并对部分章节的讲解逻辑和深度进行了调整,使其更符合高等教育的教学梯度和学生学习的认知规律。排版上,采用更清晰的版式设计,辅以高质量的图示和符号,力求在视觉和阅读体验上都达到最佳效果。 本书的价值与特点: 1. 系统性与全面性: 本书并非简单的解题技巧罗列,而是从数学思想的本质出发,将解题策略置于更宏观的数学体系中进行审视。它涵盖了从基础数学到部分高等数学领域中常见且重要的解题范式,如构造法、转化法、反证法、分类讨论法、数学归纳法、参数方程法、函数思想、几何化思想、代数化思想等等。每一类策略的介绍都辅以详细的原理阐述、典型的应用案例以及解题过程中的注意事项,确保读者能够触类旁通。 2. 深刻的理论基础与严谨的数学论证: 书中提出的每一种解题策略,都建立在坚实的数学理论基础之上。作者不仅讲解“如何做”,更注重“为何这样做”,深入剖析策略背后的数学原理和逻辑依据。所有例题的解答都经过严谨的数学推导,清晰展示解题步骤,避免了模糊和跳跃,让读者在学习解题方法的同时,进一步巩固和深化对相关数学知识的理解。 3. 丰富的例题与精心设计的习题: 例题是连接理论与实践的桥梁。本书精选了大量来自经典数学竞赛、学术研究以及高校课程的代表性例题,这些例题涵盖了不同难度等级和不同知识点,能够充分展示各种解题策略的魅力与威力。此外,每章末尾均配有精心设计的练习题,这些习题紧密围绕所讲策略,难度由易到难,旨在帮助读者巩固所学,并在实践中熟练运用各种解题方法。部分习题还提供了详细的解题思路提示,以期引导读者独立思考。 4. 强调数学思维的培养: 在信息爆炸的时代,单纯记忆解题公式和套路已不足以应对复杂的数学挑战。本书的核心目标之一是培养读者的数学思维能力,包括逻辑推理能力、抽象概括能力、空间想象能力、分析问题与解决问题的能力以及创新能力。通过对不同解题策略的深入剖析,鼓励读者跳出固定思维模式,学会从多个角度观察问题,灵活运用数学工具,寻找最优解。 5. 面向不同层次的读者: 本书既是高等院校数学类专业的必修参考书,也是非数学专业需要提升数学素养的学生的理想读物。对于数学专业的学生而言,本书能够帮助他们夯实数学基础,为后续深入学习专业课程打下坚实的基础。对于其他专业的学生,本书则提供了一个学习数学分析方法、提升逻辑思维能力的有效途径,有助于他们在各自的领域中更好地运用数学工具。 本书内容体系概述: 本书内容按照逻辑性和递进性进行编排,主要分为以下几个部分: 导论: 简要介绍数学解题的意义、重要性以及本书的编写宗旨和结构。强调数学解题不仅仅是技术层面的操作,更是思维训练的过程。 基础策略: 涵盖一些最基本、最常用的解题思想和方法。例如: 数学模型的建立与应用: 如何将实际问题转化为数学模型,以及如何利用模型解决实际问题。 一般化与特殊化: 如何通过观察一般情况或特殊情况来发现问题的规律。 类比与联想: 如何从已知问题或相似问题中获得解题启示。 数形结合思想: 如何利用几何直观或代数工具来解决问题,实现代数与几何的相互转化。 核心解题方法: 深入探讨一些在数学解题中具有普遍意义的关键策略。 构造法: 各种构造方程、构造函数、构造图形、构造辅助线等方法,以及其背后的思想。 转化与化归: 如何将复杂问题转化为简单问题,或者将待解问题转化为已知问题。例如,方程的根与函数的零点之间的关系,不等式恒成立问题等。 反证法: 如何通过假设待证命题的否定成立,并推导出矛盾来证明原命题。 分类讨论法: 在问题中存在多种可能情况时,如何进行系统性的分类,逐一进行讨论和解决。 数学归纳法: 对于与自然数相关的命题,如何使用数学归纳法进行证明。 特殊领域策略: 针对特定数学分支或问题类型,介绍相应的解题技巧。 函数与方程的解题策略: 涉及函数性质的运用、方程根的判别与计算、参数方程的应用等。 不等式的解题策略: 介绍基本不等式、柯西不等式、 Jensen不等式等常用不等式,以及构造不等式、放缩法等技巧。 数列与级数的解题策略: 涵盖等差数列、等比数列、递推关系数列的通项公式求解,以及级数收敛性的判别等。 解析几何的解题策略: 重点介绍直线、圆、椭圆、双曲线、抛物线等基本图形的性质,以及向量、参数方程等在解题中的应用。 微积分的解题策略: 讲解导数在单调性、极值、拐点、曲线凹凸性判别中的应用,以及积分在计算面积、体积、长度等问题中的应用。 综合与创新: 引导读者将各种解题策略融会贯通,形成自己的解题体系,并鼓励创新性解题。 多角度解题: 鼓励从不同视角审视同一个问题,尝试多种解题思路。 优化解题过程: 如何在保证正确性的前提下,使解题过程更简洁、更高效。 数学建模与应用: 强调数学在解决实际问题中的作用,引导读者将所学知识应用于新的情境。 学习建议: 本书的学习不应仅仅停留在阅读层面,而应积极投入到解题实践中。建议读者在阅读每一章内容后,认真钻研例题,并尝试独立完成配套的练习题。遇到困难时,不要轻易放弃,可以尝试回顾相关理论知识,或者从不同角度重新审视问题。鼓励读者之间互相交流学习经验,共同探讨解题思路。此外,保持对数学的浓厚兴趣,积极参加数学竞赛或学术活动,将有助于进一步提升数学解题能力。 结语: 《数学解题策略选讲(第2版)》致力于成为读者在数学学习道路上可靠的伙伴。通过本书的学习,我们希望帮助读者掌握一套科学有效的数学解题方法论,培养严谨的数学思维,激发对数学的探索热情,最终在解决数学问题乃至更广泛的学术研究与实际应用中,能够游刃有余,取得卓越的成就。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本《数学解题策略选讲(第2版)》简直是为我这种数学学习者量身定做的救星!我一直觉得自己的数学基础还不错,但一到解题的时候就容易卡壳,总觉得思路不够开阔。这本书真正让我眼前一亮的是它对解题“套路”的系统梳理。它不是简单地堆砌题目和答案,而是深入剖析了不同类型问题背后的核心思想。比如,在处理代数难题时,作者会详细讲解如何运用变量代换或者构造函数来简化问题,这比我过去死记硬背公式有效得多。我尤其喜欢它对“反向思考”这种策略的讲解,刚开始看觉得有点绕,但真正用在实际问题中,那种豁然开朗的感觉太棒了。书中的例题选择也相当经典,覆盖面广,既有基础的巩固,也有对思维深度的挑战。读完前几章,我感觉自己看问题的角度都变得多维了,不再局限于单一的解法。对于那些想从“会做题”跨越到“善于解题”的同学来说,这本书的价值是无可估量的。它提供的不仅仅是知识,更是一种解决问题的思维框架。

评分

老实讲,市面上关于解题技巧的书籍汗牛充栋,大部分都大同小异,读起来总是感觉在重复劳动。但《数学解题策略选讲(第2版)》绝对是其中的一股清流。它最突出的优点在于其“层次感”的构建。全书的难度和深度是循序渐进的,从基础的“观察与猜测”开始,逐步过渡到复杂的“优化与建模”。我个人非常喜欢它在讲解“归纳法”与“演绎法”结合应用时的处理方式,作者巧妙地将这两种看似矛盾的思维模式融合在同一个解题流程中,展示了数学家思考问题的完整路径。这本书的语言风格是那种沉稳而富有洞察力的,没有花哨的辞藻,每一个论述都直指核心。它成功地将“灵感”这个玄而又玄的概念,拆解成了可以学习和掌握的步骤。读完这本书,我最大的感受是,解题不再是碰运气的过程,而是一种可以被系统训练的能力。它真正做到了“授人以渔”,而不是简单地“授人以鱼”。

评分

拿到这本教材时,我本以为它会像其他同类书籍一样,充斥着大量晦涩难懂的数学符号和复杂的证明过程,读起来会让人昏昏欲睡。然而,事实完全出乎我的意料。作者的叙述语言非常平实且富有启发性,像是经验丰富的老师在耳边娓娓道来。它最大的特点在于其极强的“可操作性”。书中对每种策略的介绍都配有非常清晰的步骤分解和直观的图示辅助理解,即便是比较抽象的“均值不等式”的应用,也能被阐释得井井有条。我特别欣赏其中关于“模型构建”部分的论述,它强调了将实际问题抽象化为数学模型的能力,这才是数学思维的精髓所在。我尝试着将书中的某些技巧应用到我正在准备的竞赛模拟题上,效果立竿见影,那种信心倍增的感觉,是做大量重复练习无法替代的。这本书无疑为我打开了一扇通往更高阶数学思考的大门,它的价值远超一本普通的习题集,更像是一部精妙的“解题哲学”指南。

评分

坦白说,我是一个对数学理论学习非常头疼的人,枯燥的定义和定理总是让我提不起兴趣。但《数学解题策略选讲(第2版)》成功地把我从“数学恐惧症”的泥潭里拉了出来。这本书的排版和设计也值得称赞,字体大小适中,关键步骤加粗或用不同颜色标出,阅读体验非常舒适。我最欣赏的一点是,它并没有过分强调深奥的理论背景,而是聚焦于“如何用现有工具解决问题”。比如,对于微积分基础较弱的读者,它会提供纯代数的方法来绕过复杂的导数计算,这种实用主义的教学态度非常贴合我们实际学习的需求。它教会我的不是“记住这个公式”,而是“当你遇到A类问题时,可以尝试B、C、D这三种思路的切换”。这种灵活的、策略性的指导,让我感觉自己真正掌握了主动权,不再是被动地接受知识。这本书更像是一个高明的教练,指导你如何在赛场上灵活应变,而不是只让你在训练场上重复动作。

评分

作为一名已经工作多年的工程师,我购买这本书的初衷是想找回一些久违的数学思维的乐趣,同时也想看看现代高等数学教材是如何教授解题艺术的。这本书的第二个版本确实展现了与时俱进的特点,内容编排上更注重逻辑的连贯性和现代数学思想的融入。我特别注意到,书中对“信息转化”和“约束条件利用”的讨论非常深刻。很多难题并非因为计算复杂,而是因为我们遗漏了题目中隐藏的“暗示”。这本书非常擅长点拨这些关键的“语义学”问题,引导读者学会从文字中提取数学信息。它不是那种读完就束之高阁的书,而是可以反复翻阅,每次都能发现新东西的工具书。特别是最后几章关于复杂系统分析的策略介绍,即使在我的实际工作中也颇具参考价值。它成功地搭建了纯数学理论与实际应用问题之间的桥梁,证明了数学思维的普适性。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有