第1部分 從求解多項式方程到代數基本定理
第1章 從自然數係到有理數係
§1.1 自然數係與一元一次方程的求解
§1.2 有理數與循環小數
§1.3 可公度綫段
第二章 無理數與實數係
§2.1 無理數和不可公度綫段
§2.2 黃金分割與黃金三角形
§2.3 黃金矩形
§2.4 兔子繁殖與黃金分割
§2.5 斐波那契數列的通項公式——比奈公式
第三章 復數係與代數基本定理
§3.1 二元數與復數係
§3.2 數域的概念
§3.3 代數基本定理
§3.4 復數域是代數閉域
第二部分 代數基本定理的證明
第四章 代數基本定理的定性說明
§4.1 復平麵中的一些圓周麯綫
§4.2 多項式函數及其纏繞數
§4.3 纏繞數的一個重要性質
§4.4 r極大與極小時的兩個極端情況
第五章 業餘數學傢阿爾崗的證明
§5.1 考慮|p(z)|的最小值
§5.2 計算|p(z0+ζ)|等
§5.3 對qζν(1+ζξ)的討論
§5.4 反證法: 證明瞭代數基本定理
第六章 美國數學傢安凱奈的證明
§6.1 復變函數論中的解析函數
§6.2 柯西-黎曼定理
§6.3 連續復函數的綫積分
§6.4 微積分學中的格林定理的迴顧
§6.5 柯西積分定理
§6.6 安凱奈的思路
§6.7 (z)的兩個特殊綫積分
§6.8 兩個不相等的積分
第三部分 圓周率π和自然對數底e,及其無理性
第七章 圓周率π及其無理性
§7.1 劉徽割圓與圓周率π
§7.2 π是一個無理數
第八章 自然對數的底e及其無理性
§8.1 自然對數的底e與一些重要的公式
§8.2 一些重要的應用
§8.3 歐拉數e是一個無理數
第四部分 有關多項式與擴域的一些理論
第九章 有關多項式的一些理論
§9.1 數係S上的多項式的次數與根
§9.2 數係S上的可約多項式與不可約多項式
§9.3 多項式的可除性質
§9.4 多項式的因式、公因式與公因式
§9.5 多項式的互素與貝祖等式
§9.6 貝祖等式的一些應用以及多項式因式分解定理
§9.7 高斯引理
§9.8 整係數多項式的可約性性質
§9.9 艾森斯坦不可約判據
§9.10 多元多項式與對稱多項式
§9.11 初等對稱多項式
§9.12 對稱多項式的基本定理
§9.13 由對稱多項式基本定理得齣的一個有重要應用的定理
§9.14 關於多項式根的兩個重要的推論
第十章 有關擴域的一些理論
§10.1 數域的另一個例子
§10.2 擴域的概念
§10.3 要深入研究的一些課題
§10.4 域上的代數元以及代數數
§10.5 代數元的最小多項式
§10.6 互素的多項式與根
§10.7 代數元的次數以及代數元的共軛元
§10.8 代數元域
§10.9 單代數擴域
§10.10 添加有限多個代數元
§10.11 多次代數擴域可以用單代數擴域來實現
第五部分 代數擴域、有限擴域以及尺規作圖
第十一章 代數擴域、有限擴域與代數元域
§11.1 代數擴域
§11.2 代數元集閤A成域的域論證明
§11.3 擴域可能有的基
§11.4 有限擴域
§11.5 維數公式
§11.6 有限擴域的性質
§11.7 代數元域是代數閉域
第十二章 擴域理論的一個應用——尺規作圖問題
§12.1 尺規作圖的公理與可作點
§12.2 可作公理的推論
§12.3 可作數與實可作數域
§12.4 所有的可作數構成域
§12.5 可作數擴域
§12.6 可作實數域中的直綫與圓的方程
§12.7 尺規作圖給齣的新可作點
§12.8 尺規可作數的域論錶示
§12.9 三大古典幾何問題的解決
第六部分 π以及e是超越數
第十三章 超越數的存在與劉維爾數
§13.1 再談代數元與超越元
§13.2 兩個有趣的例子
§13.3 無窮可數集閤
§13.4 有理數域Q是可數的
§13.5 康托爾的對角綫法: 實數域R是不可數的
§13.6 代數數的整數多項式定義及相應的最 低次數的本原多項式
§13.7 代數數域是可數的
§13.8 存在超越數
§13.9 劉維爾定理
§13.10 劉維爾數ξ是超越數
§13.11 超越數的另一例
第十四章 π以及e是超越數
§14.1 一次代數數的一般形式
§14.2 二次實代數數的一般形式
§14.3 e不是二次實代數數
§14.4 e是超越數
§14.5 π是超越數
§14.6 超越數的一些基本定理
§14.7 超越擴域、代數擴域,以及有限擴域
§14.8 尾聲
——希爾伯特第七問題以及蓋爾方德-施奈德定理
附錄
附錄1 比奈公式以及常係數綫性遞推數列
附錄2 綫性方程組求解簡述
參考文獻
· · · · · · (
收起)