Principles of Mathematical Analysis

Principles of Mathematical Analysis pdf epub mobi txt 电子书 下载 2025

出版者:McGraw-Hill Education
作者:Walter Rudin
出品人:
页数:325
译者:
出版时间:1976-2-16
价格:GBP 119.99
装帧:Hardcover
isbn号码:9780070542358
丛书系列:International Series in Pure and Applied Mathematics
图书标签:
  • 数学
  • 数学分析
  • Mathematics
  • analysis
  • Analysis
  • 教材
  • math
  • 分析
  • 数学分析
  • 实分析
  • 极限理论
  • 连续性
  • 微分学
  • 积分学
  • 级数收敛
  • 拓扑基础
  • 度量空间
  • 函数空间
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.

This text is part of the Walter Rudin Student Series in Advanced Mathematics.

作者简介

目录信息

Chapter 1 The Real and Complex Number Systems 1
Introduction 1
Ordered Sets 3
Fields 5
The Real Field 8
The Extended Real Number System 11
The Complex Field 12
Euclidean Spaces 16
Appendix 17
Exercises 21
Chapter 2 Basic Topology 24
Finite, Countable, and, Uncountable Sets 24
Metric Spaces 30
Compact Sets 36
Perfect Sets 41
Connected Sets 42
Exercises 43
Chapter 3 Numerical Sequences and Series 47
Convergent Sequences 47
Subsequences 51
Cauchy Sequences 52
Upper and Lower Limits 55
Some Special Sequences 57
Series 58
Series of Nonnegative Terms 61
The Number e 63
The Root and Ratio Tests 65
Power Series 69
Summation by Parts 70
Absolute Convergence 71
Addition and Multiplication of Series 72
Rearrangements 75
Exercises 78
Chapter 4 Continuity 83
Limits of Functions 83
Continuous Functions 85
Continuity and Compactness 89
Continuity and Connectedness 93
Discontinuities 94
Monotonic Functions 95
Infinite Limits and Limits at Infinity 97
Exercises 98
Chapter 5 Differetiation 103
The Derivative of a Real Function 103
Mean Value Theorems 107
The Continuity of Derivatives 108
L'Hospital's Rule 109
Derivatives of Higher Order 110
Taylor's Theorem 110
Differentiation of Vector-valued Functions 114
Chapter 6 The Riemann-Stieltjes Integral 120
Definition and Existence of the Integral 120
Properties of the Integral 128
Integration and Differentiation 133
Integration of Vector-valued Functions 135
Rectifiable Curves 136
Chapter 7 Sequences and Series of Functions 143
Discussion of Main Problem 143
Uniform Convergence 143
Uniform Convergence and Continuity 149
Uniform Convergence and Integration 151
Uniform Convergence and Differentiation 152
Equicontinuous Families of Functions 154
The Stone-Weierstrass Theorem 159
Exercises 165
Chapter 8 Some Special Functions 172
Power Series 172
The Exponential and Logarithmic Functions 178
The Trigonometric Functions 182
The Algebraic Completeness of the Complex Field 184
Fourier Series 185
The Gamma Function 192
Exericises 196
Chapter 9 Functions of Several Variables 204
Linear Transformations 204
Differentiation 211
The Contraction Principle 220
The Inverse Function Theorem 221
The Implicit Function Theorem 223
The Rank Theorem 228
Determinants 231
Derivatives of Higher Order 235
Differentiation of Integrals 236
Exercises 239
Chapter 10 Integration of Differential Forms 245
Integration 245
Primitive Mappings 248
Partitions of Unity 251
Change of Variables 252
Differential Forms 253
Simplexes and Chains 266
Stokes' Theorem 273
Closed Forms and Exact Forms 275
Vector Analysis 280
Exercises 288
Chapter 11 The Lebesgue Theory 300
Set Functions 300
Construction of the lebesgue Measure 302
Measure Spaces 310
Measurable Functions 310
Simple Functions 313
Integration 314
Comparison with the Riemann Integral 322
Integration of Complex Functions 325
Functions of Class L2 325
Exercises 332
Bibliography 335
List of Special Symbols 337
Index 339
· · · · · · (收起)

读后感

评分

我接触过的微积分类和数学分析类的书里面,这本书写的最简洁最优美的。整体说来此书适合用来升华你对数学分析的理解,而无法用它来构建你分析的基础。篇幅的限制,多维微积分部分内容很少,但是又很抽象。rudin把多维完全放在向量微分学的框架下面处理,这样事半功倍,一下...  

评分

我作为一个智力残障人士,用了四个月的晚自习把这本书的前九章以及第十章开头读完了。根据某迷的意见,第十章学到微分几何自然就明白了,第十一章学到实分析自然也明白了,倒不如不读。 不得不说本书是一本经典之作,全是观点,基本没有技巧。另外本书可能没有大多数人说的那...  

评分

我作为一个智力残障人士,用了四个月的晚自习把这本书的前九章以及第十章开头读完了。根据某迷的意见,第十章学到微分几何自然就明白了,第十一章学到实分析自然也明白了,倒不如不读。 不得不说本书是一本经典之作,全是观点,基本没有技巧。另外本书可能没有大多数人说的那...  

评分

Rudin has written a few good math textbooks and this one is called the “Baby Rudin”. So you know it is relatively easy. The structure is very reasonable and the proofs are simply elegant. It is a pleasure to read. This may not be the textbook to start y...  

评分

本书是香港中文大学深圳数学系数学分析课的参考书,内容的难度相当高,前七章,最惊艳的部分是从Basic Topology开始。这本书在引用了拓扑的概念之后,后面的全是大招(吐血),我当时学的时候拓扑那一节,来回看了四遍(其实还是不太懂),第二个最难的地方出现在第十章,当时...  

用户评价

评分

Best book for Mathematical Analysis. End. Great textbook used by Prof Piotr Hajłasz in his fantastic course "Mathematical Analysis", preparing for PhD Prelim exam. One of the best professor I have ever met.

评分

Best book for Mathematical Analysis. End. Great textbook used by Prof Piotr Hajłasz in his fantastic course "Mathematical Analysis", preparing for PhD Prelim exam. One of the best professor I have ever met.

评分

评分

读了2/3,打印版的太伤眼,证明很不错

评分

自虐*10086

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有