Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later.
The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter.
With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout.
Provides an ideal text for a one- or two-semester introductory course on differential equations
Emphasizes modeling and applications
Presents a substantial new section on Gauss’s bell curve
Improves coverage of Fourier analysis, numerical methods, and linear algebra
Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used
Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout
Uses explicit explanation to ensure students fully comprehend the subject matter
Outstanding Academic Title of the Year, Choice magazine, American Library Association.
George F. Simmons has academic degrees from the California Institute of Technology, Pasadena, California; the University of Chicago, Chicago, Illinois; and Yale University, New Haven, Connecticut. He taught at several colleges and universities before joining the faculty of Colorado College, Colorado Springs, Colorado, in 1962, where he is currently a professor of mathematics. In addition to Differential Equations with Applications and Historical Notes, Third Edition (CRC Press, 2016), Professor Simmons is the author of Introduction to Topology and Modern Analysis (McGraw-Hill, 1963), Precalculus Mathematics in a Nutshell (Janson Publications, 1981), and Calculus with Analytic Geometry (McGraw-Hill, 1985).
评分
评分
评分
评分
这本书的装帧和纸张质量给我留下了深刻的印象。打开书本时,扑面而来的是一种厚重而扎实的感觉,这对于一本理工科的教材来说至关重要。封面设计简约而不失专业性,没有过多花哨的装饰,深色调的背景让人感觉沉稳可靠。内页的纸张触感细腻,印刷清晰度极高,即使在长时间阅读后,眼睛也不会感到明显的疲劳。我特别欣赏它排版的细节处理,公式和定理的呈现方式逻辑清晰,图表的质量也相当不错,线条精准,数据可视化效果直观。在翻阅过程中,书本的装订也展现出良好的耐用性,可以平整地摊开在桌面上,这对于需要对照多个章节进行学习的读者来说简直是福音。这种对物理载体的重视,体现了出版方对知识传递的认真态度,让阅读本身成为一种享受,而不是一种负担。对于那些喜欢在书页上做标记、写批注的读者来说,这样的纸张质量能很好地承载笔迹,不易洇墨,真是难得的好书。
评分这本书的叙述风格非常引人入胜,它巧妙地平衡了理论的严谨性和实际应用的可理解性。作者似乎深谙如何将复杂的数学概念转化为读者易于接受的语言。不同于一些教科书那样冷冰冰的公式堆砌,这里的讲解充满了“人情味”。每引入一个新的概念或解法,作者都会给出详实的背景铺垫和直观的几何或物理意义解释,让人感觉像是在听一位经验丰富的教授娓娓道来,而不是在啃一本枯燥的教材。更让人称道的是,它对于某些经典方法的推导过程,展示得极其详尽且富有洞察力,真正做到了“授人以渔”。我发现自己不仅学会了如何解题,更理解了为什么这样解题是最好的。即便是那些我以往觉得晦涩难懂的部分,在作者的层层剥茧下,也变得豁然开朗。这种教学相长的体验,远超出了我对一本标准教科书的预期。
评分这本书的深度和广度之间,存在着一种近乎完美的平衡感。它既有足够的基础内容来夯实初学者的根基,同时又蕴含了足以让进阶学习者深入探索的细节。与市面上其他专注于某一窄领域的专著不同,它提供了一个全面的、高品质的“平台”。我个人最看重的是它处理疑难点时的态度。每当涉及到需要更深层次理解才能掌握的定理证明或复杂推导时,作者并不满足于给出一个结论,而是会提供至少两种不同的视角来解读该概念——一种是直观的、符号化的;另一种则是更具普适性的、高阶的视角。这种多维度的解释策略,极大地提升了内容的吸收效率,确保了不同学习背景的读者都能从中获益。它不仅仅是一本工具书,更像是一位全天候待命的私人导师,随时准备用最适合你的方式来点拨迷津。
评分这本书在结构组织上的匠心独具,是其区别于同类著作的关键所在。章节之间的过渡极为流畅自然,仿佛一条精心编织的丝带,将不同的数学主题串联起来。它没有采取那种简单罗列知识点的结构,而是构建了一个由浅入深、层层递进的知识体系。例如,在处理特定类型的方程时,作者会首先回顾前面学过的基础知识点,并明确指出本章内容将如何扩展或深化这些知识,这种“承上启下”的处理方式,极大地帮助了读者的知识构建。此外,每一章末尾的习题设计也极具层次感,从基础的巩固性练习,到需要综合运用多种技巧的挑战性问题,难度梯度把握得恰到好处,确保了读者可以稳步提升自己的解题能力,不会因为过早遇到难以逾越的障碍而气馁。
评分从内容广度来看,这本书的覆盖范围令人称赞。它似乎有意避开了纯粹的理论分支,而是将重点放在了那些在工程、物理、乃至经济学中具有实际操作价值的微分方程类型上。无论是常微分方程的基础理论,还是偏微分方程的经典模型,书中都给予了恰当的篇幅。我尤其欣赏它对数值方法的引入,这使得书本内容紧跟现代科学研究的步伐。对于那些需要将理论应用于实际问题的读者来说,书后附带的大量应用实例,简直是宝库。这些实例的设置非常巧妙,它们不是简单的套用公式,而是引导读者思考如何将现实世界的问题抽象化、数学化,并最终求解。这种将理论与实践无缝衔接的设计,极大地增强了本书的实用价值,让读者在使用过程中能持续感受到所学知识的力量。
评分 评分 评分 评分 评分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有