Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Operators, Harmonic Function Theory, and Holomorphic Spaces.
New edition extensively revised and updated
Covers new topics such as product spaces, quotient spaces, and dual spaces
Features new visually appealing format for both print and electronic versions
Includes almost three times the number of exercises as the previous edition
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra.
The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions.
No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.
From reviews of previous editions:
“… a didactic masterpiece”
—Zentralblatt MATH
“… a tour de force in the service of simplicity and clarity … The most original linear algebra book to appear in years, it certainly belongs in every undergraduate library.”
—CHOICE
The determinant-free proofs are elegant and intuitive.
—American Mathematical Monthly
“Clarity through examples is emphasized … the text is ideal for class exercises … I congratulate the author and the publisher for a well-produced textbook on linear algebra.”
—Mathematical Reviews
我写了两份文档,但豆瓣上不能编辑公式,所以只把不涉及公式的一部分小结贴出来。) “近年来最具创新性的线性代数教材,每一位大学生都不可错过.” 这是写在中译版背后的语录.冲着“每一位大学生”,我开始读这本书.原本只是为了复习一下已经忘得差不多的大一课程,...
评分在学校学了一学期的线性代数,本来对向量空间这样的概念很有兴趣,但上了这么一学期课之后反而兴趣消失殆尽了。学校的教材完全就是公式的堆积,就给你一个又一个公式,不管是考试还是教材中的证明,给人的感觉就是从书中的某个角落里抠出一个公式来证明。让人完全感受...
评分昨晚终于看完,终于在最后一章几乎最后一节见到了我们熟悉的行列式…… 全书不是用国内的那种行列式,矩阵的方法来说明线性空间和线性代数。 证明过程也都很简洁优美,不需要传统的矩阵式的证明。 里面有些符号和国内的标准有些不同……不过侧边栏的一些小知识很有意思
评分Linear Algebra Done Right的名声实在太大了,作者本人对此书也是信心满满,从“Done Right”的命名到所谓的“一页要看一小时”的论调,都使此书充满了网红感。实际上,自然有一页看一小时的书,但Axler这本书远远排不上号。 这本书一般被推荐为线性代数的Second Course,似乎F...
评分高等代数学,或依其主要讲授内容称之为线性代数一直是教学方法难以得到统一的数学领域。就我之前翻阅过的《线性代数(同济)》将行列式作为基本工具首先介绍。引入逆序数概念,容易一开始就学得一头雾水。《代数与几何》作为我们使用的优秀教材,基本思路是通过描述线性映...
极力推荐!Linear map观点下的linear algebra简洁优雅多了。书里还藏了好多彩蛋(174页上"orthogonal"的段子,还有找找314页:)
评分线性代数2的教材,可算是学完了。最开始看的我也是真· 一脸懵逼。不过回头看来,这套书简直完爆国内任意一本线代教材(国内的教材都是什么玩意儿?是给人看的东西吗???
评分代数的语言过了一遍矩阵分析的感觉
评分好多人打三星的理由都是这本书不适合初学者学...但是这个不是从目录就看得出来吗 跳过传统教材中的矩阵/行列式直接从线性空间/映射的角度入手我觉得对于后面进阶内容的学习很有帮助啊 况且大部分的线代教材不太会讲quotient space, duality, spectral theorem之类的吧 正如某位网友评论所道 “用泛函分析降维攻击线性代数” 这本书如果拿来第二遍复习巩固的话会发现整个体系非常漂亮
评分这本书真的不适合初学者,前两章只是让你看着很美好。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有