使用說明
第一章 分析引論
1.1 實 數(習題1-40)
1.1.1 數學歸納法(習題1-10)
1.1.2 有理數集的分割(習題11-13)
1.1.3 確界的定義與性質(習題15-20)
1.1.4 含有絕對值的不等式(習題21-30)
1.1.5 絕對誤差和相對誤差(習題31-40)
1.1.6 補注(習題5,14)
1.2 數列理論(習題41-150)
1.2.1 極限的定義與計算(習題41-57)
1.2.2 幾個極限證明題(習題58-68)
1.2.3 與數e有關的習題(習題69-75(a),146-147)
1.2.4 單調有界數列收斂定理(習題77-81)
1.2.5 柯西收斂準則(習題82-88)
1.2.6 予列、聚點與上下極限(習題89-134)
1.2.7 柯西命題和施托爾茨定理(習題138-145)
1.2.8 迭代生成的數列(習題148-150)
1.2.9 補注(習題76,75(b),136-137,135)
1.3 函數的概念(習題151-236)
1.3.1 關於函數概念的基本訓練(習題151-196)
1.3.2 擬閤與插值(習題197-202)
1.3.3 復閤函數(習題203-213.2)
1.3.4 單調性、反函數和奇偶性(習題214-232)
1.3.5 周期函數(習題233-236)
1.3.6 補注
1.4 函數的圖像錶示(習題237-380)
1.4.1 有理函數的圖像(習題237-265)
1.4.2 無理函數、冪函數和初等超越函數的圖像(習題266-324.2)
1.4.3 關於圖像運算的一般規律(習題325-367)
1.4.4 反函數、用參數錶示的函數和隱函數的圖像(習題368-370.2)
1.4.5 極坐標係中的函數圖像(習題371.1-371.3)
1.4.6 用函數圖像求方程(組)的近似解(習題372-380)
1.4.7 補注
1.5 函數的極限(習題381-644)
1.5.1 有界性、確界和振幅(習題381-400)
1.5.2 函數極限的定義(習題401-407)
1.5.3 有理函數的極限計算(習題408-434)
1.5.4 無理函數的極限計算(習題435-470)
1.5.5 初等超越函數的極限計算(習題471-591,602,604-605)
1.5.6 雜題(習題592-601,603,613-636,641-644)
1.5.7 補注(習題606-612,637-640)
1.6 符號O(習題645-661)
1.7 函數的連續性(習題662-758)
1.7.1 連續性的定義(習題662-674)
1.7.2 連續性分析與作圖(習題675-733)
1.7.3 連續函數的局部性質(習題734-747,749-750)
1.7.4 連續函數的整體性質(習題751,753-757)
1.7.5 補注(習題748,752,758)
1.8 反函數.由參數方程確定的函數(習題759-784)
1.8.1 反函數的存在性(習題759-766)
1.8.2 反函數的單值連續分支(習題767-779)
1.8.3 由參數方程確定的函數(習題780-784)
1.9 函數的一緻連續性(習題785-808)
1.10 函數方程(習題809-820)
1.10.1 柯西方法(習題809-820)185
1.10.2 補注
第二章 一元微分學
2.1 顯函數的導數(習題821-1033)
2.1.1 導數的定義(習題821-833)
2.1.2 導數的計算(習題834-989)
2.1.3 雜題(習題990-1023)
2.1.4 應用題(習題1024-1033)
2.2 反函數、用參數錶示的函數和隱函數的導數(習題1034-1054)
2.2.1 反函數的導數(習題1034-1037)
2.2.2 用參數錶示的函數的導數(習題1038-1047)
2.2.3 隱函數的導數(習題1048-1054)
2.3 導數的幾何意義(習題1055-1082)
2.4 函數的微分(習題1083-1110)
2.5 高階導數和微分(習題1111-1234)
2.5.1 顯函數的高階導數和微分的計算(習題1111-1139)
2.5.2 非顯函數的高階導數和微分的計算(習題1140-1150)
2.5.3 應用題(習題1151-1155)
2.5.4 高階導數與微分計算(續)(習題1156-1185)
2.5.5 n階導數與微分計算(習題118L1234)
2.6 羅爾定理.拉格朗日定理和柯西定理(習題1235-1267)
2.6.1 羅爾定理(習題1235-1243)
2.6.2 拉格朗日中值定理(習題1244-1251)
2.6.3 柯西中值定理(習題1252-1253)261
2.6.4 中值定理的其他應用(習題1254-1265)262
2.6.5 補注(習題1266-1267)
2.7 函數的遞增與遞減.不等式(習題1268-1297)
2.7.1 單調性分析(習題1268-1287)
2.7.2 不等式(習題1288-1295,1297)
2.7.3 補注(習題1296)
2.8 凹凸性.拐點(習題1298-1317)
2.8.1 凹凸性分析(習題1298-1310,1313)
2.8.2 與凹凸性有關的一些證明題(習題1311-1312,131L1317)
2.8.3 補注
2.9 不定式極限(習題1318-1375)
2.9.1 不定式計算Ⅰ(習題1318-1338,1358-1360,1367,1368(b))
2.9.2 不定式計算Ⅱ(習題1339-1357,1361-1366,1368(a),1369-1370)
2.9.3 雜題(習題1371-1375)
2.9.4 補注
2.10 泰勒公式(習題1376-1413)
2.10.1 泰勒公式計算(習題1376-1392)
2.10.2 若乾證明題(習題1393)
2.10.3 近似計算與誤差估計(習題1394-1397)
2.10.4 局部泰勒公式的一些應用(習題1398-1413)
2.11 函數的極值.函數的最大值和最小值(習題1414-1470)
2.11.1 極值的研究(習題1414-1428)
2.11.2 極值、最值和確界的計算(習題1429-1455)
2.11.3 不等式證明(習題1456)
2.11.4 偏差計算(習題1457-1461)
2.11.5 根的個數問題(習題1462-1470)
2.11.6 補注
2.12 根據特徵點作函數圖像(習題1471-1555)
2.12.1 有理函數的圖像(習題1471-1483)
2.12.2 無理函數與初等超越函數的圖像(習題1484-1530)
2.12.3 參數方程與隱函數方程錶示的麯綫(習題1531-1545)
2.12.4 極坐標係中的函數圖像(習題1546-1550)
2.12.5 麯綫族的圖像(習題1551-1555)
2.12.6 補注
2.13 函數的極大值和極小值問題(習題1556-1590)
2.14 麯綫相切.麯率圓.漸屈綫(習題1591-1616)
2.15 方程的近似解(習題1617-1627)
附錄一 1.4的圖像參考答案
附錄二 2.12的圖像參考答案
附錄三 命題索引
參考文獻
· · · · · · (
收起)