This introduction to topology provides separate, in-depth coverage of both general topology and algebraic topology. Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
刚刚读完第一部分,感觉很不错,懂了很多东西,困难的定理它会分成几步,而且习题很给力,这本书也是别人介绍我的,听说是点集拓扑里面最好 的入门书。这种书评的东西都是见仁见智的,等我以后水平好了,再改改吧。
评分 评分 评分刚读到第三章,目前为止感觉内容安排的还是很合理的,习题是值得好好作的,数量适当,有基础性的,也有延伸性的,就像书中说的,有些题目可以写文章了。 翻译的也不错,只是有些地方略感矫情。 以上纯属拙见。
评分第一章75页的必备知识有些拖沓,不如分到后面章节,有Rudin数学分析原理前几章基础者速读而过为宜。 精彩部分从第二章开始,讲述点集拓扑及其扩展内容。第二部分的代数拓扑并非必要。 讲解非常详细,配图非常到位,是入门的好书。
标准的拓扑学入门教材,习题也很好。当年入门拓扑学的第一本书,前前后后花了一个假期,总算读完了这本著名的Munkres。
评分空间开拓很有意思
评分再读感觉有不1样
评分不知道在说什么。。。。
评分扫尾四。拓扑入门首选。和尤承业的书结构很像,但看看Munkres写了多少页吧。点集部分详细到完全可以当手册查,但好玩的是后半本代拓入门。据我所知数学系的课也不会讲紧曲面和复叠空间的分类,但正是这部分让我更加想学习代拓。承接Hatcher很不错。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有