前言
第1章 理想流體中聲波的基本性質
1.1 聲波方程
1.1.1 Lagrange坐標下的波動方程
1.1.2 Euler坐標下的守恒定律
1.1.3 小振幅聲波方程
1.1.4 速度勢和二階非綫性方程
1.1.5 Lagrange坐標與Euler坐標的關係
1.2 聲場的基本性質
1.2.1 聲場的能量關係
1.2.2 初始條件和邊界條件
1.2.3 聲場的唯一性
1.2.4 疊加原理和反演對稱性
1.2.5 聲學中的互易原理
1.3 行波解和平麵波展開
1.3.1 直角坐標中的平麵行波
1.3.2 角譜展開方法
1.3.3 球麵行波及其平麵波展開
1.3.4 柱麵行波及其平麵波展開
1.4 平麵界麵上聲波的反射和透射
1.4.1 不同介質間界麵上的反射和透射
1.4.2 阻抗界麵上的反射及蠕行波
1.4.3 瞬態平麵波的反射和透射
1.4.4 有限寬波束的反射和透射
1.4.5 隔聲的基本規律
1.4.6 薄闆的隔聲
1.5 聲波的度量、測量和分析
1.5.1 聲壓級和加權聲壓級
1.5.2 聲波的相乾性
1.5.3 聲波接收的基本原理
1.5.4 聲學中的不確定關係
第2章 無限空間中聲波的輻射
2.1 多極子展開和組閤聲源
2.1.1 單極子和自由空間的Green函數
2.1.2 偶極子聲輻射
2.1.3 四極子聲輻射
2.1.4 小區域體源和麵源
2.1.5 組閤聲源
2.2 柱狀聲源的輻射
2.2.1 柱坐標中分離變量法
2.2.2 振動柱體嚮無限空間中的輻射
2.2.3 柱體上的活塞振動和穩相法
2.2.4 自由空間Green函數的柱函數展開
2.2.5 存在剛性圓柱時空間的Green函數
2.3 球狀聲源的輻射
2.3.1 球坐標中分離變量法
2.3.2 球麵振動嚮無限空間的輻射
2.3.3 自由空間Green函數的球函數展開
2.3.4 存在剛性球時空間的Green函數
2.4 平麵界麵附近的聲輻射
2.4.1 聲場的Green函數錶示
2.4.2 阻抗平麵前點聲源的輻射
2.4.3 分層平麵前點聲源的輻射和側麵波
2.4.4 無限大剛性或阻抗障闆上的活塞輻射
2.4.5 圓形剛性活塞輻射的瞬態解
2.4.6 自由空間的圓盤輻射
2.5 有限束超聲場和非衍射波
2.5.1 有限束超聲場
2.5.2 非衍射波束的譜展開
2.5.3 等聲速非衍射波束
2.5.4 超聲速非衍射波束
2.6 聲波與聲源的相互作用
2.6.1 無限大膜的聲輻射
2.6.2 無限剛性障闆上圓膜振動的輻射
2.6.3 無限大薄闆的彎麯振動
2.6.4 無限剛性障闆上薄闆振動的輻射
第3章 聲波的散射和衍射
3.1 柱體和球體的散射
3.1.1 無限長圓柱體對平麵波的散射
3.1.2 球體對平麵波的散射
3.1.3 水中氣泡的共振散射
3.1.4 球體對球麵波的散射
3.1.5 橢圓柱體的散射
3.1.6 任意形狀的積分方程方法
3.2 非均勻區域的散射
3.2.1 非均勻區域的聲波基本方程
3.2.2 散射的積分方程和Born近似
3.2.3 非穩態不均勻區對聲波的散射
3.2.4 隨機分布散射體的散射
3.2.5 錶麵的散射
3.2.6 周期結構中聲波的傳播
3.3 剛性屏和楔的聲衍射
3.3.1 屏對平麵波的衍射
3.3.2 屏對柱麵波的衍射
3.3.3 剛性楔的衍射
3.3.4 楔形區內的聲場
3.3.5 剛性地麵上的有限屏
3.4 逆散射和衍射CT理論
3.4.1 Kirchhoff積分公式
3.4.2 邊界反演的Kirchhoff近似
3.4.3 非均勻介質反演的Born和Rytov近似
3.4.4 二維近場衍射CT理論
3.4.5 反射模式的衍射CT
3.4.6 聲源的反演
第4章 管道中的聲傳播和激發
4.1 等截麵波導中聲波的傳播
4.1.1 剛性壁麵的等截麵波導
4.1.2 阻抗壁麵的等截麵波導
4.1.3 剛性和阻抗壁麵的矩形波導
4.1.4 剛性和阻抗壁麵的圓形波導
4.1.5 剛性壁麵的橢圓柱體波導
4.2 等截麵波導中聲波的激發
4.2.1 頻率域振動麵激發
4.2.2 振動麵激發的瞬態波形
4.2.3 頻率域Green函數
4.2.4 時間域Green函數
4.2.5 管道壁麵振動激發的聲場
4.3 突變截麵波導及平麵波近似
4.3.1 突變截麵波導的模式展開方法
4.3.2 平麵波近似
4.3.4 駐波管及吸聲材料法嚮係數的測量
4.3.5 周期截麵波導中的平麵波
4.4 集中參數模型
4.4.1 典型子結構的集中參數模型
4.4.2 具有子結構的管道係統
4.4.3 具有周期旁支結構的管道
4.4.4 集中參數係統
4.5 緩變截麵管道中的平麵波
4.5.1 Webster方程
4.5.2 指數麯綫形號筒
4.5.3 其他Salmon號筒
4.5.4 Webster方程的WKB近似
4.5.5 一般管道的WKB近似
第5章 腔體中的聲場
5.1 簡正模式理論
5.1.1 剛性壁麵腔體的簡正模式和展開
5.1.2 阻抗壁麵腔體的簡正模式
5.1.3 阻抗壁麵腔體中聲波方程的頻域解
5.1.4 阻抗壁麵腔體中聲波方程的時域解
5.1.5 腔內聲場與壁麵振動的耦閤
5.2 規則形腔中的簡正模式
5.2.1 剛性壁麵的矩形腔
5.2.2 阻抗壁麵的矩形腔
5.2.3 剛性和阻抗壁麵的球形腔
5.2.4 剛性和阻抗壁麵的圓柱形腔
5.2.5 不規則腔的變分近似
5.2.6 不規則腔的模式展開方法
5.3 高頻近似和擴散聲場
5.3.1 腔內的穩態聲場
5.3.2 腔內的瞬態聲場
5.3.3 擴散聲場及其基本性質
5.3.4 擴散聲場的統計方法
5.3.5 擴散場中聲壓的空間相關特性
5.3.6 擴散聲場中界麵的聲吸收和透射
5.4 低頻近似和Helmholtz共振腔
5.4.1 封閉腔的低頻近似
5.4.2 無限大障闆上的Helmholtz共振腔
5.4.3 自由場中的Helmholtz共振腔
5.4.4 共振頻率的管端修正
5.4.5 黏滯和熱傳導的影響
5.5 兩個腔的耦閤
5.5.1 耦閤腔聲場的激發
5.5.2 耦閤腔的簡正模式和簡正頻率
5.5.3 高頻擴散場近似
5.5.4 低頻近似
5.5.5 封閉腔中的Helmholtz共振腔
第6章 非理想流體中聲波的傳播和激發
6.1 非理想流體中的聲波方程
6.1.1 黏滯流體的本構方程
6.1.2 黏滯流體中的聲波方程
6.1.3 等溫聲速和等熵聲速
6.1.4 能量守恒關係
6.1.5 邊界條件
6.2 耗散介質中聲波的傳播和散射
6.2.1 無限大耗散介質中的平麵波模式
6.2.2 聲學邊界層理論
6.2.3 邊界層的能量損失
6.2.4 剛性邊界上平麵波的反射
6.2.5 耗散介質中球的散射
6.3 管道和狹縫中平麵波的耗散
6.3.1 粗圓管中的平麵波
6.3.2 細圓管中的平麵波和微穿孔材料
6.3.3 狹縫中平麵波傳播
6.3.4 熱聲效應
6.4 黏滯對聲輻射的影響
6.4.1 黏滯介質中的多極展開
6.4.2 平麵聲源
6.4.3 球麵和柱麵聲源
6.4.4 一般尺度聲源
6.5 流體和生物介質中聲波的吸收
6.5.1 經典吸收的討論
6.5.2 分子弛豫吸收理論
6.5.3 生物介質中的聲吸收和分數階導數
6.5.4 Kramers-Kronig色散關係
第7章 平麵層狀介質中的聲波
7.1 平麵層狀波導
7.1.1 單一均勻層波導中的簡正模式
7.1.2 單一均勻層波導中聲波的單頻激發
7.1.3 雙層流體波導中的簡正模式
7.1.4 雙層流體波導中聲波的單頻激發
7.2 連續變化平麵層狀介質
7.2.1 連續變化介質平麵波導
7.2.2 綫性變化波導和Airy函數
7.2.3 淺海平麵波導
7.2.4 大氣中點源激發的聲場
7.2.5 平麵波的反射和透射
7.3 WKB近似方法
7.3.1 WKB近似理論
7.3.2 轉摺點附近的解
7.3.3 漸近匹配方法
7.3.4 連續變化層狀波導的WKB近似解
7.3.5 轉摺點波導中聲波的激發
7.4 幾何聲學近似
7.4.1 程函方程和輸運方程
7.4.2 Fermat原理和Hamilton形式
7.4.3 平麵層狀介質中的聲綫
7.4.4 射綫管的能量守恒
7.4.5 圓弧焦散綫附近的聲場
第8章 運動介質中的聲傳播和激發
8.1 勻速運動介質中的聲波
8.1.1 勻速流動介質中的波動方程
8.1.2 聲波的反射和透射
8.1.3 頻域Green函數
8.1.4 具有均勻流的管道
8.2 運動聲源激發的聲波
8.2.1 亞音速勻速運動
8.2.2 超音速勻速運動
8.2.3 針狀物超音速運動産生的場
8.2.4 運動聲源的輻射功率
8.2.5 非勻速運動的聲源
8.3 緩變非均勻流動介質中的聲波
8.3.1 分層穩定流動介質中的波動方程
8.3.2 分層穩定流動介質中的點質量源激發
8.3.3 穩定流動介質中的幾何聲學
8.3.4 非穩定流動介質
8.4 不穩定流動産生的聲波
8.4.1 Lighthill理論
8.4.2 湍流區域存在界麵的情況
8.4.3 氣流噪聲的譜分布
8.4.4 漩渦産生的聲波
第9章 有限振幅聲波的傳播
9.1 理想介質中的有限振幅平麵波
9.1.1 簡單波和衝擊波
9.1.2 畸變波形的諧波分析
9.1.3 一般周期波和Fenlon解
9.1.4 復閤波聲場和Riemann不變量
9.2 黏滯和熱傳導介質中的有限振幅波
9.2.1 非綫性方程的微擾展開
9.2.2 一維有限振幅行波
9.2.3 Burgers方程的Fay解
9.2.4 有限振幅球麵波和柱麵波
9.2.5 二階近似下的Westervelt方程
9.3 色散介質中的有限振幅波
9.3.1 弛豫介質中的有限振幅平麵波
9.3.2 管道中的有限振幅平麵波
9.3.3 生物介質中的有限振幅波
9.3.4 含氣泡液體中的有限振幅波
9.4 有限振幅聲束的傳播
9.4.1 KZK方程
9.4.2 準綫性理論
9.4.3 參量陣理論
9.4.4 非綫性自解調
9.4.5 強非綫性聲束
第10章 有限振幅聲波的物理效應
10.1 聲輻射壓力和聲懸浮
10.1.1 聲輻射壓力
10.1.2 聲噴泉效應
10.1.3 剛性小球的聲懸浮
10.1.4 可壓縮球的聲懸浮
10.2 聲流理論
10.2.1 Eckart理論及其修正
10.2.2 Nyborg聲流理論
10.2.3 平麵界麵附近的聲流
10.2.4 剛性小球附近的微聲流
10.3 聲空化效應
10.3.1 液體的空化核理論
10.3.2 不可壓縮液體中氣泡的振動
10.3.3 可壓縮液體的Trlling模型
10.3.4 可壓縮液體的Keller-Miksis模型
10.3.5 氣泡振動分析
主要參考書目
附錄
附錄A 常見物體的聲參數
A.1 液體
A.2 氣體
A.3 固體
A.4 生物組織
附錄B 矢量場的運算
B.1 三個矢量的積
B.2 矢量場的微分公式
B.3 矢量場的微分錶達式
B.4 矢量場積分公式
附錄C 球和柱坐標中的本構關係
C.1 柱坐標
C.2 球坐標
附錄D 張量運算公式
D.1 並矢和張量定義
D.2 張量的運算
D.3 梯度算子▽的張量形式
D.4 張量場的微分公式
D.5 張量場的積分公式
附錄E 特殊函數的常用公式
E.1 柱函數的遞推公式
E.2 虛宗量Bessel函數的遞推公式
E.3 球Bessel函數的遞推公式
E.4 Legendre函數的遞推公式
E.5 Bessel函數的常用積分
附錄F 熱力學關係
F.1 隱函數F(x,y,z)=0的微分關係
F.2 Maxwell關係
附錄G 英漢人名對照
· · · · · · (
收起)