This book is written by award-winning author, Frank Morgan. It offers a simple and sophisticated point of view, reflecting Morgan's insightful teaching, lecturing, and writing style. Intended for undergraduates studying real analysis, this book builds the theory behind calculus directly from the basic concepts of real numbers, limits, and open and closed sets in $mathbb{R}^n$. It gives the three characterizations of continuity: via epsilon-delta, sequences, and open sets. It gives the three characterizations of compactness: as "closed and bounded," via sequences, and via open covers. Topics include Fourier series, the Gamma function, metric spaces, and Ascoli's Theorem. This concise text not only provides efficient proofs, but also shows students how to derive them. The excellent exercises are accompanied by select solutions. Ideally suited as an undergraduate textbook, this complete book on real analysis will fit comfortably into one semester. Frank Morgan received the first Haimo Award for distinguished college teaching from the Mathematical Association of America. He has also garnered top teaching awards from Rice University (Houston, TX) and MIT (Cambridge, MA).
Frank Morgan works in minimal surfaces and studies the behavior and structure of minimizers in various dimensions and settings. His proof with colleagues and students of the Double Bubble Connecture is featured at the NSF Discoveries site. He has six books: Geometric Measure Theory: a Beginner's Guide (4th ed. 2009), Calculus Lite 2001, Riemannian Geometry: a Beginner's Guide 1998, The Math Chat Book 2000, based on his live, call-in Math Chat TV show and Math Chat column, Real Analysis 2005, and Real Analysis and Applications 2005.
Morgan went to MIT and Princeton, where his thesis advisor, Fred Almgren, introduced him to minimal surfaces. He then taught for ten years at MIT, where he served for three years as Undergraduate Mathematics Chairman, received the Everett Moore Baker Award for excellence in undergraduate teaching, and held the Cecil and Ida Green Career Development Chair. He spent leave years at Rice, Stanford, and the Institute for Advanced Study. He served on the NSF Math Advisory Committee from 1994-97, and as chair of the Hudson River Undergraduate Mathematics Conference in 1997. In January, 1993, he received an inaugural MAA national award for distinguished teaching. In 1995 he represented mathematics research at the exhibition for Congress by the Coalition for National Science Funding. He received the Allen High School Distinguished Alumni Award and an honorary doctorate from Cedar Crest College. For 1997-98 he held the first Visiting Professorship for Distinguished Teaching at Princeton University. From 2000-2002 he served as Second Vice-President of the Mathematical Association of America. He is currently (2009-2012) Vice-President of the American Mathematical Society and has launched the AMS Graduate Student Blog, by and for mathematics graduate students.
Morgan served at Williams as Mathematics Department Chair and founding director of an NSF undergraduate research project. He is currently Webster Atwell '21 Professor of Mathematics at Williams College.
See also Wikipedia and "A Math Chat with Frank Morgan" by Donald J. Albers, Math Horizons, The Mathematical Association of America, September 1997, 14-17.
评分
评分
评分
评分
这本书的翻译(或者原著的文字风格,我读的是英文原版)有一种沉静而富有节奏感的韵律。我发现自己会不自觉地放慢语速来阅读它,尤其是在处理那些涉及到序列收敛和函数空间的部分。那种严谨到近乎苛刻的措辞,反而带来了一种奇特的安抚作用,它告诉你,在这个由公理和定义构筑的世界里,一切都是可以被精确把握的,没有模糊地带。我特别喜欢书中穿插的一些历史脚注,它们往往能将一个抽象的数学概念与提出者的生平或那个时代的学术背景联系起来,这使得数学不再是孤立的符号操作,而是人类智慧演进的一部分。例如,关于柯西序列的讨论,作者巧妙地引入了非标准分析的简单概念作为对比,这不仅展示了标准实数系的完备性是多么精妙的设计,也为我们提供了横向比较的工具。这种教学上的‘横向拓展’能力,是区分一本优秀教材和一本卓越教材的关键。这本书没有为了炫耀复杂性而复杂化,它所有的深度都服务于清晰地阐述基本原理,让读者能够建立起一座结构稳固的知识大厦。
评分这本书的封面设计简直是一场视觉盛宴,那种深邃的蓝色调配上简约的字体,立刻就能让人感受到它所蕴含的深厚底蕴。初次翻开,我被那种排版的美感所吸引,每一个公式、每一个定理都被精心布局,仿佛艺术品一般。阅读的过程,与其说是学习,不如说是一场与作者的深度对话。作者的叙述方式非常独特,他没有直接把你推入冰冷的数学证明中,而是像一位经验丰富的向导,一步步引导你领略背后的美学和逻辑。特别是对拓扑空间的引入部分,处理得极其细腻和优雅,从直观的理解过渡到严谨的定义,衔接得天衣无缝。我花了很多时间去品味那些开篇的引言,它们不仅仅是装饰,更是对整个章节精神内核的精准概括。那种‘顿悟’的瞬间,往往发生在那些看似不经意的细节描述中,让人不禁拍案叫绝。这本书的配套习题集也是亮点,它们的设计初衷显然不是为了刁难人,而是为了加深理解和探索可能的边界。做完几道难题后,我感觉自己对这个领域有了全新的视角,不再仅仅是记住规则,而是真正理解了规则背后的必然性。这本书无疑是为那些真正热爱数学美感的人准备的,它值得被放在书架最显眼的位置,时不时地去重温那些闪耀着智慧光芒的章节。
评分说实话,当我看到这本书的厚度和目录时,我的第一反应是“挑战”。我一直认为,要真正理解实分析,需要经历多次反复的磨砺。然而,这本书的阅读体验出乎我的意料——它更像是一场马拉松,而不是一场百米冲刺。关键在于,作者非常注重“为什么”而不是仅仅“是什么”。很多教科书会直接抛出一个定义,要求你接受它。但这本书会花大量的篇幅去解释,为什么我们需要这个定义?它解决了旧理论中的哪些根本性缺陷?这种历史的、哲学的视角,极大地丰富了我对数学理论发展的理解。例如,在讲解勒贝格积分时,作者没有直接跳到测度论,而是先回顾了黎曼积分的局限性,那种代入感非常强,让我真切体会到了新理论诞生的必要性。此外,书中对测度论的介绍,其清晰度和几何直观性是其他任何我读过的教材都无法比拟的。它不像是在讲解纯粹的抽象结构,更像是在描述一个宏大而精确的宇宙模型。读完一章后,我感觉我的数学思维的“分辨率”都被提高了,看问题不再是模糊的一片,而是能分辨出更精细的结构和边界。
评分从一个纯粹应用数学背景的学生的角度来看,这本书的入门友好度远超我的预期。我原以为实分析会是通往抽象理论的陡峭山崖,但我发现这本书为我铺设了一条平缓而坚实的石板路。它在构建理论的同时,也在不断地提醒读者,这些看似脱离现实的理论,最终将成为处理更复杂分析问题的基石。书中关于反例的讨论尤其精彩,作者花了足够多的篇幅去构造那些看似违反直觉,实则完美符合定义的病态函数或集合,这教会了我批判性思考的重要性——永远不要轻易相信一个定理的表面结论,直到你亲眼见证了它的边界在哪里。这种对“例外情况”的重视,让我对后续学习泛函分析和傅立叶分析等分支有了更强的信心。总而言之,这本书不是那种读完一遍就可以束之高阁的工具书,它更像是一部值得反复研读的经典。每一次重温,都会有新的感悟,每一次翻阅,都会发现之前忽略的精妙之处。它不仅教会了我如何进行实数分析,更重要的是,它重塑了我对数学严谨性的理解和敬畏之心。
评分我是在为我的研究生课程寻找一本能真正打下坚实基础的参考书时,偶然接触到这本书的。坦白说,很多同类的教材,读起来就像是枯燥的法律条文,生硬且缺乏生气。但这本书完全不同,它有一种几乎是“说服”读者的魔力。作者的行文逻辑极其紧密,仿佛是一条精心编织的逻辑链条,任何一个环节的缺失都会让整个结构崩塌,而这本书的结构却坚固无比。我特别欣赏作者处理“极限”这个核心概念的方式,他没有急于给出ε-δ语言,而是先从直觉和实际问题入手,层层递进,直到读者心悦诚服地接受这种抽象的表达。这种教学方法极大地降低了初学者的心理门槛。在阅读某些复杂证明时,我常常会停下来,思考作者是如何想到这个关键步骤的,然后翻阅前面的铺垫,惊喜地发现,所有的线索其实早就埋好了。这种‘伏笔’和‘呼应’的写作技巧,让阅读过程充满了侦探解谜的快感。这本书的深度是毋庸置疑的,但它难得之处在于,它用一种非常“人性化”的语言去包装了这些高深的理论,使得那些原本被认为只能被少数天才理解的概念,变得触手可及,这对于我这样需要快速掌握并应用知识的学者来说,简直是福音。
评分 评分 评分 评分 评分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有