本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中最有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。
全书共两卷,第一卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。
本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
这书真有那么好吗?两本加起来才1095页啊?有人说覆盖了泛涵与复分,这可能吗?还有,你们看得就是2006年出版的吗?我实在想学数学分析,因为工作要用,但我看别人推荐的《微积分学教程》,觉得挺晦涩,还有,请达人告诉我,我学这个是为了学明白场论,不规范场,还有,想深入...
评分卓里奇前辈的这本书当然是好书,经典中的经典。但是作为教材,他不一定适合。首先他甚至不一定适合本科分析学教材,更加不适合本科工科教材,虽然清华用它,虽然它里面的例子很多。 说它不适合作为本科教材, 1是太现代。太现代就造成太抽象,太抽象会让大部分正常水平的本科生...
评分 评分这书真有那么好吗?两本加起来才1095页啊?有人说覆盖了泛涵与复分,这可能吗?还有,你们看得就是2006年出版的吗?我实在想学数学分析,因为工作要用,但我看别人推荐的《微积分学教程》,觉得挺晦涩,还有,请达人告诉我,我学这个是为了学明白场论,不规范场,还有,想深入...
评分无比惊艳的一本书。无论是从集合中的罗素悖论引出集合公理化,还是从有序数对的笛卡尔积中引出坐标轴,或者是从实数的完备性公理中引出无穷小量,都无疑让我豁然开朗,感受到作者的高屋建瓴。实在是太厉害了。只可惜这本书太过于庞杂,没有充分的时间研读,只能换教材了。 估计...
粗浅地过了一遍。据说是布尔巴基学派代表作,果然异常生猛,很强????有时间会再重读几遍。
评分定积分 可积性条件那一节感觉不如 谢惠民的 数学分析讲义处理的好
评分粗浅地过了一遍。据说是布尔巴基学派代表作,果然异常生猛,很强????有时间会再重读几遍。
评分定积分 可积性条件那一节感觉不如 谢惠民的 数学分析讲义处理的好
评分非常欣赏的一本数学分析,不仅适合数学系,也适合对微积分要求较高的理工科专业,尤其是物理学专业。李植翻译的比第四版好。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有