Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations pdf epub mobi txt 电子书 下载 2026

出版者:Wiley
作者:J. C. Butcher
出品人:
页数:538
译者:
出版时间:2016-8
价格:USD 120.0
装帧:Hardcover
isbn号码:9781119121503
丛书系列:
图书标签:
  • 数学
  • 数值计算
  • 数值方法
  • 常微分方程
  • ODE
  • 数值分析
  • 科学计算
  • 数学
  • 工程
  • 算法
  • 计算数学
  • 微分方程
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject

The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics.

In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems.

探索时间:理解与求解动态系统的奥秘 我们生活在一个不断变化的世界,从天体运行的规律,到生物体内细胞的增殖,再到经济市场的潮起潮落,无数的现象都遵循着动态的演变过程。这些动态过程,往往可以用常微分方程(Ordinary Differential Equations, ODEs)来精确地描述。理解这些方程,就如同掌握了揭示世界运行机制的金钥匙。 《探索时间:理解与求解动态系统的奥秘》 将带您踏上一段深入探索常微分方程世界的旅程。本书并非侧重于繁复的数学推导或抽象的理论框架,而是聚焦于如何理解常微分方程所描述的现实问题,以及如何有效地求解它们。我们相信,最深刻的学习往往源于对实际应用的直观把握。 本书内容概览: 第一部分:理解动态的语言——常微分方程初探 什么是常微分方程? 我们将从最基础的概念出发,解释常微分方程的构成要素:未知函数、自变量以及它们之间的导数关系。通过生动形象的例子,如物体的自由落体、简单的电路模型,让您直观地感受常微分方程在描述变化中的强大力量。 方程的“行为”:定性分析 在不进行精确数值计算的情况下,我们如何洞察一个方程的解会如何表现?本书将介绍相平面分析、稳定性分析等定性方法。例如,通过分析一个生态系统中捕食者与被捕食者数量变化的微分方程,我们可以预测它们的数量是会趋于稳定,还是会发生周期性波动,甚至导致一方的灭绝。您将学会识别吸引子、排斥子和极限环等关键特征,从而理解系统的长期行为。 现实问题的建模 任何模型都是对现实的简化,但如何建立一个能够捕捉核心动态的微分方程模型至关重要。本书将指导您如何将实际问题转化为数学模型,例如,如何根据人口增长的观察数据建立指数增长模型或逻辑斯蒂增长模型;如何描述放射性物质的衰变过程;如何分析传染病的传播模型。我们将强调模型构建中的假设、近似以及它们的局限性。 第二部分:驾驭动态的工具——求解常微分方程的方法 解析解的魅力与局限 对于一些简单的常微分方程,我们可以找到精确的解析解,即用初等函数或特殊函数表示的解析表达式。本书将介绍一些经典的解析求解方法,如变量分离法、积分因子法、常数变易法等,并展示如何运用这些方法解决诸如匀速直线运动、复利计算等问题。然而,我们也必须认识到,大多数实际问题的常微分方程并没有简单的解析解。 数值方法的必要性与原则 当解析解无能为力时,数值方法便成为我们强大的武器。本书将系统地介绍一系列经典的常微分方程数值求解方法。我们将从最基本的欧拉方法入手,理解其工作原理和误差来源。随后,我们将深入探讨更高级、更精确的方法,如改进欧拉法、龙格-库塔(Runge-Kutta)方法(包括经典四阶龙格-库塔方法)以及多步法。 理解数值方法的“精度”与“稳定性” 任何数值方法都不可避免地引入误差。本书将详细解释截断误差(由泰勒展开截断产生)和舍入误差(由计算机运算精度产生)的概念,以及它们如何累积影响最终结果。更重要的是,我们将深入探讨数值方法的稳定性。一个不稳定的方法,即使在理论上是准确的,也可能因为微小的误差放大而导致解发散,变得毫无意义。您将学习如何评估方法的精度和稳定性,并根据问题的特性选择合适的方法。 刚性方程的挑战与应对 某些常微分方程系统,即使在很小的数值范围内,其解的变化也可能非常剧烈,这类方程被称为刚性方程。求解刚性方程需要特殊设计的数值方法,本书将介绍隐式方法(如向后欧拉法)以及适应性步长控制等技术,以应对这类棘手的挑战。 多步法与预测-校正策略 对于需要较高精度或计算效率的应用,多步法提供了一种利用过去计算结果来预测当前步值的有效途径。本书将介绍Adams-Bashforth和Adams-Moulton等经典多步法,以及预测-校正的计算策略,这是一种结合了显式方法和隐式方法的强大技术。 第三部分:实践出真知——应用与案例分析 从物理到工程 本书将通过一系列引人入胜的案例,展示如何运用常微分方程及其数值求解方法来分析和预测各种工程和科学问题。例如,我们将模拟弹道轨迹,分析机械振动的响应,研究电路的暂态行为,以及理解流体动力学中的简单模型。 生物与经济的动态 动态系统无处不在。我们将探索传染病的传播模型,如SIR模型,并讨论如何通过数值模拟来预测疫情的发展趋势。在经济领域,我们将分析简单的经济增长模型,了解利率变化对投资的影响,以及研究金融市场的价格动态。 数值模拟的艺术 编写和运行数值模拟代码是掌握这些方法的关键。本书将提供清晰的伪代码和概念解释,引导您理解如何将算法转化为实际的计算程序。您将学会如何设置初始条件、选择合适的步长、评估计算结果的可靠性,以及如何可视化模拟结果,从而更直观地理解系统的动态演变。 《探索时间:理解与求解动态系统的奥秘》 旨在成为您理解和解决动态系统问题的可靠伙伴。无论您是初学者,还是希望深化理解的专业人士,本书都将为您提供坚实的基础和实用的工具,帮助您自信地驾驭那些描述世界变化规律的迷人方程。让我们一同开启这场探索时间、揭示奥秘的精彩旅程。

作者简介

J.C Butcher, Emeritus Professor, University of Auckland, New Zealand

目录信息

Foreword xiii
Preface to the first edition xv
Preface to the second edition xix
Preface to the third edition xxi
1 Differential and Difference Equations 1
10 Differential Equation Problems 1
100 Introduction to differential equations 1
101 The Kepler problem 4
102 A problem arising from the method of lines 7
103 The simple pendulum 11
104 A chemical kinetics problem 14
105 The Van der Pol equation and limit cycles 16
106 The Lotka–Volterra problem and periodic orbits 18
107 The Euler equations of rigid body rotation 20
11 Differential Equation Theory 22
110 Existence and uniqueness of solutions 22
111 Linear systems of differential equations 24
112 Stiff differential equations 26
12 Further Evolutionary Problems 28
120 Many-body gravitational problems 28
121 Delay problems and discontinuous solutions 30
122 Problems evolving on a sphere 33
123 Further Hamiltonian problems 35
124 Further differential-algebraic problems 36
13 Difference Equation Problems 38
130 Introduction to difference equations 38
131 A linear problem 39
132 The Fibonacci difference equation 40
133 Three quadratic problems 40
134 Iterative solutions of a polynomial equation 41
135 The arithmetic-geometric mean 43
14 Difference Equation Theory 44
140 Linear difference equations 44
141 Constant coefficients 45
142 Powers of matrices 46
15 Location of Polynomial Zeros 50
150 Introduction 50
151 Left half-plane results 50
152 Unit disc results 52
Concluding remarks 53
2 Numerical Differential Equation Methods 55
20 The Euler Method 55
200 Introduction to the Euler method 55
201 Some numerical experiments 58
202 Calculations with stepsize control 61
203 Calculations with mildly stiff problems 65
204 Calculations with the implicit Euler method 68
21 Analysis of the Euler Method 70
210 Formulation of the Euler method 70
211 Local truncation error 71
212 Global truncation error 72
213 Convergence of the Euler method 73
214 Order of convergence 74
215 Asymptotic error formula 78
216 Stability characteristics 79
217 Local truncation error estimation 84
218 Rounding error 85
22 Generalizations of the Euler Method 90
220 Introduction 90
221 More computations in a step 90
222 Greater dependence on previous values 92
223 Use of higher derivatives 92
224 Multistep–multistage–multiderivative methods 94
225 Implicit methods 95
226 Local error estimates 96
23 Runge–Kutta Methods 97
230 Historical introduction 97
231 Second order methods 98
232 The coefficient tableau 98
233 Third order methods 99
234 Introduction to order conditions 100
235 Fourth order methods 101
236 Higher orders 103
237 Implicit Runge–Kutta methods 103
238 Stability characteristics 104
239 Numerical examples 108
24 Linear MultistepMethods 111
240 Historical introduction 111
241 Adams methods 111
242 General form of linear multistep methods 113
243 Consistency, stability and convergence 113
244 Predictor–corrector Adams methods 115
245 The Milne device 117
246 Starting methods 118
247 Numerical examples 119
25 Taylor Series Methods 120
250 Introduction to Taylor series methods 120
251 Manipulation of power series 121
252 An example of a Taylor series solution 122
253 Other methods using higher derivatives 123
254 The use of f derivatives 126
255 Further numerical examples 126
26 MultivalueMulitistage Methods 128
260 Historical introduction 128
261 Pseudo Runge–Kutta methods 128
262 Two-step Runge–Kutta methods 129
263 Generalized linear multistep methods 130
264 General linear methods 131
265 Numerical examples 133
27 Introduction to Implementation 135
270 Choice of method 135
271 Variable stepsize 136
272 Interpolation 138
273 Experiments with the Kepler problem 138
274 Experiments with a discontinuous problem 139
Concluding remarks 142
3 Runge–KuttaMethods 143
30 Preliminaries 143
300 Trees and rooted trees 143
301 Trees, forests and notations for trees 146
302 Centrality and centres 147
303 Enumeration of trees and unrooted trees 150
304 Functions on trees 153
305 Some combinatorial questions 155
306 Labelled trees and directed graphs 156
307 Differentiation 159
308 Taylor’s theorem 161
31 Order Conditions 163
310 Elementary differentials 163
311 The Taylor expansion of the exact solution 166
312 Elementary weights 168
313 The Taylor expansion of the approximate solution 171
314 Independence of the elementary differentials 174
315 Conditions for order 174
316 Order conditions for scalar problems 175
317 Independence of elementary weights 178
318 Local truncation error 180
319 Global truncation error 181
32 Low Order ExplicitMethods 185
320 Methods of orders less than 4 185
321 Simplifying assumptions 186
322 Methods of order 4 189
323 New methods from old 195
324 Order barriers 200
325 Methods of order 5 204
326 Methods of order 6 206
327 Methods of order greater than 6 209
33 Runge–Kutta Methods with Error Estimates 211
330 Introduction 211
331 Richardson error estimates 211
332 Methods with built-in estimates 214
333 A class of error-estimating methods 215
334 The methods of Fehlberg 221
335 The methods of Verner 223
336 The methods of Dormand and Prince 223
34 Implicit Runge–Kutta Methods 226
340 Introduction 226
341 Solvability of implicit equations 227
342 Methods based on Gaussian quadrature 228
343 Reflected methods 233
344 Methods based on Radau and Lobatto quadrature 236
35 Stability of Implicit Runge–Kutta Methods 243
350 A-stability, A(α)-stability and L-stability 243
351 Criteria for A-stability 244
352 Padé approximations to the exponential function 245
353 A-stability of Gauss and related methods 252
354 Order stars 253
355 Order arrows and the Ehle barrier 256
356 AN-stability 259
357 Non-linear stability 262
358 BN-stability of collocation methods 265
359 The V and W transformations 267
36 Implementable Implicit Runge–Kutta Methods 272
360 Implementation of implicit Runge–Kutta methods 272
361 Diagonally implicit Runge–Kutta methods 273
362 The importance of high stage order 274
363 Singly implicit methods 278
364 Generalizations of singly implicit methods 283
365 Effective order and DESIRE methods 285
37 Implementation Issues 288
370 Introduction 288
371 Optimal sequences 288
372 Acceptance and rejection of steps 290
373 Error per step versus error per unit step 291
374 Control-theoretic considerations 292
375 Solving the implicit equations 293
38 Algebraic Properties of Runge–Kutta Methods 296
380 Motivation 296
381 Equivalence classes of Runge–Kutta methods 297
382 The group of Runge–Kutta tableaux 299
383 The Runge–Kutta group 302
384 A homomorphism between two groups 308
385 A generalization of G1 309
386 Some special elements of G 311
387 Some subgroups and quotient groups 314
388 An algebraic interpretation of effective order 316
39 Symplectic Runge–Kutta Methods 323
390 Maintaining quadratic invariants 323
391 Hamiltonian mechanics and symplectic maps 324
392 Applications to variational problems 325
393 Examples of symplectic methods 326
394 Order conditions 327
395 Experiments with symplectic methods 328
4 Linear Multistep Methods 333
40 Preliminaries 333
400 Fundamentals 333
401 Starting methods 334
402 Convergence 335
403 Stability 336
404 Consistency 336
405 Necessity of conditions for convergence 338
406 Sufficiency of conditions for convergence 339
41 The Order of Linear Multistep Methods 344
410 Criteria for order 344
411 Derivation of methods 346
412 Backward difference methods 347
42 Errors and Error Growth 348
420 Introduction 348
421 Further remarks on error growth 350
422 The underlying one-step method 352
423 Weakly stable methods 354
424 Variable stepsize 355
43 Stability Characteristics 357
430 Introduction 357
431 Stability regions 359
432 Examples of the boundary locus method 360
433 An example of the Schur criterion 363
434 Stability of predictor–corrector methods 364
44 Order and Stability Barriers 367
440 Survey of barrier results 367
441 Maximum order for a convergent k-step method 368
442 Order stars for linear multistep methods 371
443 Order arrows for linear multistep methods 373
45 One-leg Methods and G-stability 375
450 The one-leg counterpart to a linear multistep method 375
451 The concept of G-stability 376
452 Transformations relating one-leg and linear multistep methods 379
453 Effective order interpretation 380
454 Concluding remarks on G-stability 380
46 Implementation Issues 381
460 Survey of implementation considerations 381
461 Representation of data 382
462 Variable stepsize for Nordsieck methods 385
463 Local error estimation 386
Concluding remarks 387
5 General Linear Methods 389
50 RepresentingMethods in General Linear Form 389
500 Multivalue–multistage methods 389
501 Transformations of methods 391
502 Runge–Kutta methods as general linear methods 392
503 Linear multistep methods as general linear methods 393
504 Some known unconventional methods 396
505 Some recently discovered general linear methods 398
51 Consistency, Stability and Convergence 400
510 Definitions of consistency and stability 400
511 Covariance of methods 401
512 Definition of convergence 403
513 The necessity of stability 404
514 The necessity of consistency 404
515 Stability and consistency imply convergence 406
52 The Stability of General Linear Methods 412
520 Introduction 412
521 Methods with maximal stability order 413
522 Outline proof of the Butcher–Chipman conjecture 417
523 Non-linear stability 419
524 Reducible linear multistep methods and G-stability 422
53 The Order of General Linear Methods 423
530 Possible definitions of order 423
531 Local and global truncation errors 425
532 Algebraic analysis of order 426
533 An example of the algebraic approach to order 428
534 The underlying one-step method 429
54 Methods with Runge–Kutta stability 431
540 Design criteria for general linear methods 431
541 The types of DIMSIM methods 432
542 Runge–Kutta stability 435
543 Almost Runge–Kutta methods 438
544 Third order, three-stage ARK methods 441
545 Fourth order, four-stage ARK methods 443
546 A fifth order, five-stage method 446
547 ARK methods for stiff problems 446
55 Methods with Inherent Runge–Kutta Stability 448
550 Doubly companion matrices 448
551 Inherent Runge–Kutta stability 450
552 Conditions for zero spectral radius 452
553 Derivation of methods with IRK stability 454
554 Methods with property F 457
555 Some non-stiff methods 458
556 Some stiff methods 459
557 Scale and modify for stability 460
558 Scale and modify for error estimation 462
56 G-symplectic methods 464
560 Introduction 464
561 The control of parasitism 467
562 Order conditions 471
563 Two fourth order methods 474
564 Starters and finishers for sample methods 476
565 Simulations 480
566 Cohesiveness 481
567 The role of symmetry 487
568 Efficient starting 492
Concluding remarks 497
References 499
Index 509
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书的封面设计简直是一场视觉的灾难,那种老旧的、泛黄的排版,活像是我在二手书店角落里翻到的、尘封了三十年的教科书。我原本还抱着一丝希望,期待着它能带来一些现代数值分析的洞见,结果一打开目录,我就知道自己错了。内容上,它似乎对近二十年来的方法学进步完全视而不见,充斥着大量对早期欧拉法、龙格-库塔方法的冗长阐述,仿佛时间停滞在了上个世纪。我花了好大力气才找到一些关于边界值问题的章节,但即便是那部分,讲解也极其晦涩,公式推导跳跃得令人摸不着头脑,根本没有提供足够的直观理解或实际应用的案例来辅助学习。我尝试用书中的方法去解决一个简单的物理模型,结果发现书中的伪代码几乎无法直接转化为任何主流编程语言,充满了过时的语法和难以理解的符号约定。说实话,如果不是为了完成课程的指定阅读,我真想直接把它扔进回收箱。它更像是一本历史文献集,而非一本实用的数值计算指南,对于任何希望掌握前沿数值方法的学习者来说,这简直是一种浪费时间。它几乎没有提到任何关于自适应步长控制的现代算法,更别提现代高效求解器如BDF或更复杂的微分代数方程组的处理策略了。

评分

这本书的写作风格与其说是在“教学”,不如说是在“倾诉”,而且是一种非常古板、毫无生气的倾诉。作者的叙事腔调极其学术化,但缺乏将复杂概念简化的能力。每一个定理的引入都伴随着一大段冗长的背景铺垫,但真正到关键的证明步骤时,却常常使用一种“读者应该已经知道”的假设,导致初学者完全跟不上思路。我特别留意了关于稳定性分析的那一章,那部分本应是理解数值方法的精髓所在,然而,作者只是机械地罗列了各种稳定性区域的图形,没有深入探讨这些区域对真实世界问题的实际影响,比如如何选择一个在特定物理约束下既稳定又高效的积分器。更糟糕的是,书中的图表质量低劣,分辨率模糊,很多关键的数值解曲线看起来像是用老旧的绘图仪打印出来的,根本无法清晰地区分不同方法之间的细微差别。阅读体验简直是一种煎熬,我不得不频繁地翻阅其他在线资源来补充对基本概念的理解,这本书本身提供的帮助微乎其微,它更像是作者把自己毕生的笔记原封不动地搬了过来,却忘了如何与听众沟通。

评分

坦率地说,这本书的练习题设计简直是反人类的折磨。它们不是为了加深理解,而是为了测试读者是否能忍受极端枯燥的计算。绝大多数习题都要求手动进行繁琐的矩阵求逆和迭代过程,对于我们现在普遍使用计算工具的时代背景来说,这显得荒谬至极。例如,一个求解非线性边界值问题的例子,要求读者手工进行二十步的牛顿迭代,精确到小数点后六位,这在实际工程中是完全不切实际的,也完全偏离了数值分析的核心目标——即高效地近似求解复杂问题。即便是一些概念性的问题,其表述也极其含糊不清,没有明确指出期望的答案深度和范围。我试着去做其中一个涉及雅可比矩阵推导的习题,发现书本正文中根本没有提供足够详细的上下文来指导推导过程,结果我花了大量时间在反复猜测作者的意图上,最终放弃。如果这本书是为了培养下一代的工程师和科学家,那么它提供的训练方法无疑是过时且低效的,它侧重于机械重复,而非批判性思维。

评分

我对这本书的引用和参考资料列表感到非常失望。它似乎停留在上个世纪八九十年代,对于近期的重大突破,例如针对大型稀疏系统的高性能求解器、或者针对不适定问题的正则化技术,完全没有提及。这就好比一本关于计算机网络的书,却只引用了贝尔实验室早期的报告,而对互联网协议栈的现代发展避而不谈。当我在查找关于“刚性(Stiffness)”问题的处理方法时,书中给出的建议非常有限,仅仅停留在对隐式欧拉法的简单介绍,完全没有涉及现代刚性求解器如LSODE或更先进的ODE/DAE混合求解策略的任何信息。这种信息上的滞后性,使得这本书在指导当代研究工作方面几乎失去了价值。一个严肃的数值方法教材,其参考书目应当是其思想的广度和深度的体现,而这本书的参考文献列表,透露出一种与时代脱节的孤芳自赏。

评分

从装帧和印刷质量的角度来看,这本书的表现也令人不敢恭维。纸张薄得近乎透明,印刷的油墨浓淡不一,很多数学符号,尤其是那些希腊字母和上下标,在交叉排版的公式中显得模糊不清,需要仔细辨认才能确定是哪个变量。内页的装订也相当脆弱,仅仅几次翻阅,书脊就已经开始发出不堪重负的吱嘎声,我深切怀疑它能否撑过一个学期的正常使用。在电子资源泛滥的今天,如果一本实体书无法提供卓越的物理阅读体验来弥补其内容上的不足,那么它存在的意义就很值得怀疑了。这本教材的制作工艺,简直是对纸张资源的浪费。我甚至在其中几页发现了轻微的墨水污渍,这让我对出版商的质量控制产生了严重的怀疑。总而言之,它在内容、教学法和物理形态上都表现出一种令人沮丧的落后感,我无法推荐给任何严肃的学习者。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有