Residuated Lattices

Residuated Lattices pdf epub mobi txt 电子书 下载 2026

出版者:Elsevier Science Ltd
作者:Galatos, Nikolaos/ Jipsen, Peter/ Kowalski, Tomasz/ Ono, Hiroakira
出品人:
页数:532
译者:
出版时间:2007-6
价格:$ 158.20
装帧:HRD
isbn号码:9780444521415
丛书系列:
图书标签:
  • Residue lattice
  • Lattice theory
  • Algebraic lattices
  • Universal algebra
  • Order theory
  • Mathematical logic
  • Abstract algebra
  • Non-classical logic
  • Category theory
  • Algebra
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin.We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions.Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples.We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric. This book: Considers both the algebraic and logical perspective within a common framework; Is written by experts in the area; Is easily accessible to graduate students and researchers from other fields; Includes results summarized in tables and diagrams to provide an overview of the area; Is useful as a textbook for a course in algebraic logic, with exercises and suggested research directions; And provides a concise introduction to the subject and leads directly to research topics. The ideas from algebra and logic are developed hand-in-hand and the connections are shown in every level.

《范畴论导引:基础与应用》 本书旨在为读者提供一个扎实而深入的范畴论基础,并展示其在现代数学各个分支中的广泛应用。范畴论作为一种抽象和统一的数学语言,提供了一种看待数学结构和它们之间关系的全新视角。本书的编写目标是,让初学者能够理解其核心概念,而有经验的数学家则能从中发现新的连接和洞察。 第一部分:范畴论的基石 第一章:范畴的定义与基本概念 本章从最基本的范畴(Category)的定义入手,详细阐述了对象(Objects)、态射(Morphisms)及其复合(Composition)的严格要求。我们将探讨平凡范畴、小范畴和大范畴之间的区别,并引入函子(Functor)的概念,作为连接不同范畴的桥梁。重点分析协变函子(Covariant Functor)和反变函子(Contravariant Functor)的本质差异及其在数学实践中的体现,例如积函子和遗忘函子。 第二章:自然变换与范畴间的关系 自然变换(Natural Transformation)是范畴论中描述两个函子间“结构保持”关系的工具。本章深入剖析自然变换的定义,并阐明它如何体现了数学结构之间的等价性或同构性。我们将讨论自然同构(Natural Isomorphism)和函子的等价性(Equivalence of Categories),这对于判断不同数学理论的深层结构是否一致至关重要。通过具体的例子,如向量空间的对偶性,展示自然变换的强大威力。 第三章:特殊结构与极限 极限(Limits)和余极限(Colimits)是范畴论中最核心的概念之一,它们概括了数学中“构造”和“求解”过程的通用模式。本章详细介绍积(Product)、拉回(Pullback)、等化子(Equalizer)等各种极限的构造。特别地,我们将深入探讨终对象(Terminal Object)和初对象(Initial Object)的意义。随后的内容转向余极限,包括上积(Coproduct)、推拉(Pushout)和上等化子(Coequalizer),展示它们在代数结构(如群、环、模)的合并中的作用。 第二部分:构造与完备性 第四章:伴随函子:对偶性的核心 伴随函子(Adjoint Functors)是范畴论中最深刻的概念之一,它描述了两个函子之间的一种普遍存在的“最佳逼近”关系,是数学中各种对偶性和泛性质的体现。本章详细定义了伴随关系,并重点分析了自由函子与遗忘函子、张量积与Hom函子等经典伴随对。我们将阐述伴随函子的存在性定理及其在构建新数学结构时的重要性。 第五章:阿贝尔范畴与同调代数基础 阿贝尔范畴(Abelian Categories)是满足特定条件的范畴,它们在代数拓扑和同调代数中扮演着核心角色。本章讨论短正合序列、核(Kernel)和上核(Cokernel)的概念,这些都是在阿贝尔范畴中定义的。我们将介绍链复形(Chain Complexes)和长正合序列(Long Exact Sequences),为理解同调代数奠定基础,尽管我们不会深入到具体的同调群计算中。 第六章:笛卡尔闭范畴与λ演算的连接 笛卡尔闭范畴(Cartesian Closed Categories, CCCs)是范畴论中与函数式编程和逻辑学联系最紧密的结构。本章专注于讨论指数对象(Exponential Objects)和内部Hom对象,这些是定义CCC的关键要素。我们将展示CCC如何自然地对态射的集合(函数空间)进行建模,并探讨它们与λ演算(Lambda Calculus)之间的深刻联系,揭示抽象代数与计算理论之间的统一性。 第三部分:范畴论的应用视角 第七章:拓扑学中的应用:纤维丛与覆盖空间 本章展示范畴论如何提供一种更具洞察力的方式来处理拓扑概念。我们将使用范畴论的语言重述覆盖空间(Covering Spaces)的概念,特别是通过构造覆盖函子(Covering Functor)。我们将探讨基本群(Fundamental Group)作为拓扑空间上一个函子的性质,以及如何利用函子的性质来研究空间的连通性和结构。 第八章:代数几何中的预层与层 预层(Presheaves)和层(Sheaves)是现代代数几何和微分几何的基石。本章从范畴论的视角引入预层范畴,即从拓扑空间范畴到集合范畴的特定反变函子。随后,我们将定义层,并解释为什么它们能够有效地“粘合”局部信息以形成全局结构。我们将讨论层同构的概念,并简要提及导出函子(Derived Functors)在层上同调中的作用,作为后续研究的引子。 第九章:类型论与逻辑的交汇 本章探索范畴论作为连接数学逻辑和计算机科学的通用框架。我们将讨论“构造”与“对象”的对应关系,以及“证明”与“态射”的对应关系(Curry-Howard同构的范畴论表述)。通过对极小范畴(Minimal Categories)和直觉主义逻辑的讨论,读者将体会到范畴论在形式化推理和构造性数学中的强大潜力。 结论 本书的结构设计旨在引导读者从具体的范畴实例出发,逐步掌握范畴论的抽象工具,并最终将其应用于分析不同数学领域的结构。我们强调了范畴论作为一种“元语言”的价值,它并非旨在取代现有数学分支,而是提供了一个统一的框架,用以发现不同领域间隐藏的深刻联系。我们希望读者在完成本书的学习后,能够以一种全新的、结构化的思维方式来审视数学世界。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有