Pipelined Adc Design and Enhancement Techniques

Pipelined Adc Design and Enhancement Techniques pdf epub mobi txt 电子书 下载 2026

出版者:Springer ScienceþBusiness Media B.V.
作者:Imran Ahmed
出品人:
页数:225
译者:
出版时间:
价格:996.00
装帧:
isbn号码:9789048186518
丛书系列:
图书标签:
  • Analog
  • ADC
  • Circuits
  • ADC
  • Pipeline ADC
  • Analog Circuit Design
  • Mixed-Signal Circuit
  • High-Speed ADC
  • Low-Power ADC
  • Digital Calibration
  • Error Correction
  • Circuit Optimization
  • VLSI Design
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Pipelined ADCs have seen a tremendous growth in innovation and scope over the

past few years. As such understanding both the basic concepts and the leading edge techniques required to realize pipelined ADCs which meet the challenging specifications of today’s market and applications is required. While pipelined ADCs are popular circuit blocks, beyond publications in periodicals there are only a few condensed resources which are dedicated to education in the area. This book aims to help bridge the gap with a thorough discussion of pipelined ADCs.

This book is targeted to both the beginner and expert looking to acquire

knowledge in pipelined ADCs. In the first section of this book, a tutorial discussion

of several key design tradeoffs involved in designing a pipelined ADC is given. The

discussion is presented with sufficient detail so as to allow those with only intro-

ductory knowledge of pipelined ADCs to quickly understand the limiting factors

which motivate research into methods which enhance the performance of pipelined ADCs. In the second half of this book a detailed overview and discussion of four state-of-the-art pipelined ADCs with silicon implementations and measured results is given. The innovations include: a technique to rapidly digitally correct gain +DAC errors in a pipelined ADC, an architecture to enable a single ADC to be

designed to achieve low power for a very wide range of sampling rates, a circuit

technique to eliminate front-end sample-and-holds in pipelined ADCs, and finally a

very low power pipelined ADC architecture based on capacitive charge pumps.

The innovations presented in this book provides several tools which can be of

great use to help a pipelined ADC designer deliver a design with good linearity,

broad application, and very low power.

《高性能数据采集系统:原理、架构与实践》 本书旨在深入探讨现代数据采集(ADC)系统的设计原理、关键技术及其在各个领域中的应用。读者将通过本书全面了解ADC系统的核心概念,掌握不同类型ADC的优缺点,并学习如何根据具体需求选择和设计最优的ADC架构。 核心内容概述: 第一部分:数据采集系统基础 数字信号处理导论: 回顾信号的采样、量化和编码等基本概念,介绍采样定理在ADC设计中的重要性。 ADC基本原理与分类: 详细阐述逐次逼近型ADC(SAR ADC)、流水线型ADC(Pipeline ADC)、Sigma-Delta ADC、闪速型ADC(Flash ADC)等主流ADC架构的工作原理。深入分析各自的性能指标,如采样速率、分辨率、功耗、非线性度等,并探讨其适用场景。 ADC性能指标详解: 深入解析Integral Non-Linearity (INL)、Differential Non-Linearity (DNL)、Signal-to-Noise Ratio (SNR)、Signal-to-Noise and Distortion Ratio (SINAD)、Effective Number of Bits (ENOB) 等关键性能指标的定义、测量方法及其对系统整体性能的影响。 模拟前端电路设计: 介绍用于ADC信号调理的关键模拟电路模块,包括采样保持电路(S/H)、低噪声放大器(LNA)、滤波器、输入缓冲器等的设计考量与实现技术。 第二部分:ADC架构深度解析 SAR ADC的设计细节: 深入讲解SAR ADC的比较器设计、电容阵列(DAC)的实现与优化、数字校准技术等,并探讨其在高分辨率、低功耗应用中的潜力。 Sigma-Delta ADC的精髓: 详细解析Sigma-Delta调制器(Modulator)的结构、噪声整形原理、高阶调制器的设计挑战。介绍数字滤波器(Decimator)在Sigma-Delta ADC中的作用与设计方法,重点关注高分辨率、高线性度应用。 Flash ADC与Twos-Complement ADC: 分析Flash ADC的并行比较器结构、速度优势及其在高速采样应用中的局限性。介绍Twos-Complement ADC的工作原理和优缺点。 混合信号集成: 探讨ADC与其他模拟和数字模块(如PLL、DAC、DSP核心)的集成设计,以及由此带来的系统级挑战与优化策略。 第三部分:ADC性能优化与应用 噪声分析与抑制: 系统性地分析ADC系统中各种噪声源(如热噪声、闪烁噪声、量化噪声、时钟抖动噪声),并提出有效的抑制策略,包括器件选择、电路布局、噪声滤波等。 非线性度补偿技术: 深入研究ADC的非线性度产生原因,介绍多种线性度校准与补偿技术,包括查找表(LUT)校准、增益和失调校准、以及针对特定ADC架构的非线性度修正方法。 电源管理与低功耗设计: 探讨ADC系统中的电源分配、去耦、以及低功耗设计技术,包括动态电压频率调整(DVFS)、睡眠模式、以及优化电路工作点等。 时钟抖动对ADC性能的影响: 分析时钟抖动对ADC采样精度的影响,介绍时钟信号的完整性要求,以及降低时钟抖动对ADC性能的影响的实用技术。 第四部分:ADC在现代系统中的应用 通信系统中的ADC: 探讨ADC在软件定义无线电(SDR)、基站、移动设备等通信系统中的应用,重点关注其对带宽、动态范围和功耗的要求。 医疗电子领域的ADC: 分析ADC在医学影像设备(如CT、MRI)、生物信号采集(如ECG、EEG)、以及可穿戴健康监测设备中的关键作用,强调高精度、低功耗和生物兼容性。 工业自动化与仪器仪表: 介绍ADC在传感器接口、数据采集系统、示波器、频谱分析仪等仪器仪表中的应用,关注其在恶劣环境下的可靠性和精度。 嵌入式系统与物联网(IoT): 探讨ADC在嵌入式系统和IoT设备中的角色,包括传感器数据采集、低功耗节点设计,以及如何在资源受限的环境下实现高效数据采集。 先进ADC技术展望: 简要介绍当前ADC技术的前沿研究方向,如更高速度、更高分辨率的ADC、模数混合信号SoC设计、以及在新兴应用中的潜在突破。 本书适合通信、电子工程、计算机科学等领域的工程师、研究人员和高年级本科生、研究生阅读。通过学习本书,读者将能够深刻理解ADC的工作原理,熟练掌握ADC的设计与优化方法,并将其成功应用于各类高性能数据采集系统中。

作者简介

目录信息

1 Introduction ............................................................... 1
1.1 Overview ............................................................... 1
1.2 Chapter Outline ........................................................ 3
1.2.1 Section I: Pipelined ADC Design .............................. 3
1.2.2 Section II: Pipelined ADC Enhancement Techniques ......... 4
Part I Pipelined ADC Design
2 ADC Architectures ....................................................... 7
2.1 Overview ............................................................... 7
2.2 Factors Which Determine ADC Resolution and Linearity ............ 7
2.3 ADC Architectures ................................................... 11
2.4 ADC Figure-of-Merit ................................................. 12
2.5 Flash ADC ............................................................ 12
2.6 SARADC ............................................................. 14
2.7 Sub-sampling ......................................................... 16
2.8 Summary .............................................................. 17
3 Pipelined ADC Architecture Overview ................................ 19
3.1 Overview .............................................................. 19
3.2 Pipelined ADC Introduction .......................................... 19
3.3 Multiplying Digital to Analog Converter (MDAC) .................. 21
3.4 Opamp DC Gain Requirements ...................................... 23
3.5 Opamp Bandwidth Requirements .................................... 26
3.6 Thermal Noise Requirements ......................................... 28
3.7 MDAC Design: Capacitor Matching/Linearity ...................... 29
3.8 Error Correction in Pipelined ADCs: Relaxed Sub-ADC
Requirements ......................................................... 31
3.9 Sub-ADC Design: Comparator ....................................... 35
3.10 Front-End Sample-and-Hold ........................................ 36
3.11 Summary ............................................................. 38
4 Scaling Power with Sampling Rate in an ADC ........................ 39
4.1 Overview .............................................................. 39
4.2 ADC Power as a Function of Sampling Rate ........................ 39
4.3 Digital Versus Analog Power ......................................... 40
4.4 Weak Inversion Model: EKV ........................................ 42
4.5 Weak Inversion Issues: Mismatch .................................... 43
4.6 Current Scaling: Multiple Design Corners . . . ........................ 45
4.7 Current Scaling: Bias Point Sensitivity .............................. 45
4.8 Current Scaling: IR Drops ............................................ 46
4.9 Summary .............................................................. 48
5 State of the Art Pipelined ADC Design ................................ 49
5.1 Overview .............................................................. 49
5.2 Calibration in Pipelined ADCs ....................................... 49
5.2.1 Review of Error Sources ....................................... 50
5.2.2 Gain Error Correction ......................................... 50
5.2.3 DAC Error Correction ......................................... 52
5.2.4 Foreground Calibration ........................................ 52
5.2.5 Background Calibration ....................................... 53
5.2.6 Rapid Calibration of ADC Errors ............................. 54
5.3 Power Scalability with Respect to Sampling Rate ................... 56
5.4 Power Reduction Techniques in Pipelined ADCs .................... 56
5.4.1 Front-End S/H Removal ....................................... 56
5.4.2 Open-Loop Amplifier Approach ............................... 58
5.4.3 Comparator Based Switched Capacitor Circuits .............. 60
5.5 Summary .............................................................. 61
Part II Pipelined ADC Enhancement Techniques
6 Rapid Calibration of DAC and Gain Errors in a Multi-bit
Pipeline Stage ............................................................ 65
6.1 Overview .............................................................. 65
6.2 Motivation ............................................................ 65
6.2.1 Why Are DAC Errors Important to Correct? ................. 66
6.3 Rapid DAC + Gain Calibration Architecture ........................ 66
6.3.1 Measurement of Missing Codes Due to DAC
and Gain Errors ................................................ 67
6.3.2 Correction of Missing Codes .................................. 68
6.3.3 Mismatch Between ADCs ..................................... 69
6.3.4 Simulation Results ............................................. 70
6.4 Circuit Implementation ............................................... 73
6.4.1 Front-End Sample-and-Hold ................................... 74
6.4.2 5-Bit Flash ADC ............................................... 75
6.4.3 4-Bit MDAC ................................................... 75
6.4.4 Backend Pipelined ADC ....................................... 77
6.4.5 Digital Calibration ............................................. 78
6.5 Testing ................................................................ 78
6.5.1 PCB ............................................................ 79
6.5.2 Test Setup ...................................................... 79
6.6 Measured Results ..................................................... 81
6.6.1 INL/DNL Plots ................................................ 81
6.6.2 SNDR/SFDR Plots ............................................. 81
6.6.3 Calibration Time ............................................... 82
6.7 Summary .............................................................. 84
7 A Power Scalable and Low Power Pipelined ADC .................... 85
7.1 Overview .............................................................. 85
7.2 Power Scalable Architecture ......................................... 85
7.3 Current Modulated Power Scaling (CMPS) . . ........................ 88
7.4 Current Switching Issues ............................................. 91
7.5 Hybrid Power Scaling ................................................ 92
7.6 Detailed Trigger Analysis ............................................ 93
7.7 Design of the Digital State Machine ................................. 97
7.8 Rapid Power-On Opamps ........................................... 100
7.8.1 Conventional Approach: Switched Bias Opamp ............. 100
7.8.2 Rapid Power-On Opamps Used in This Work ............... 101
7.8.3 Benefits of Feedback Based Biasing: Increased Output
Resistance ..................................................... 104
7.8.4 Opamp Specification/Characterization ....................... 105
7.9 Common Mode Feed Back (CMFB) for Rapid
Power-On Opamp ................................................... 109
7.10 Power Reduction Through Current Modulation .................. 111
7.10.1 Common Mode Feed Back (CMFB) for
Different Opamp Modes .................................. 112
7.11 Sample-and-Hold (S/H) ........................................... 113
7.12 1.5-bit MDAC ..................................................... 114
7.13 Sub-ADC Comparators ............................................ 114
7.14 Bias Circuits ....................................................... 115
7.15 Non-overlapping Clock Generator ................................ 116
7.16 Reference voltages ................................................ 117
7.17 Digital Error Correction ........................................... 118
7.18 Experimental Implementation: PCB .............................. 118
7.19 Experimental Implementation: Test Setup . . ...................... 118
7.20 Measured Results .................................................. 120
7.21 Current Scaled Power ............................................. 121
7.21.1 Power Reduction Mode: Static Accuracy ................. 127
7.21.2 Power Scalable ADC: Current Scaling ................... 131
7.22 Power Scalable ADC: Power Scaling Using CMPS .............. 137
7.23 Summary ........................................................... 144
8 A Sub-sampling ADC with Embedded Sample-and-Hold ........... 147
8.1 Overview ............................................................ 147
8.2 Motivation .......................................................... 147
8.3 Embedded S/H Technique .......................................... 148
8.4 Circuit Implementation ............................................. 151
8.4.1 ADC Architecture ............................................ 151
8.4.2 Rapid Power-On Opamp ...................................... 152
8.4.3 Generation of Delayed Clock F2D ........................... 153
8.5 Test Setup: PCB .................................................... 155
8.6 Test Setup: Equipment .............................................. 156
8.7 Measured Results ................................................... 156
8.7.1 SNDR Versus Input Frequency ............................... 157
8.7.2 Power Versus Sampling Rate ................................. 158
8.7.3 Tdelay Versus Settling Time: Robustness of Technique ...... 159
8.8 Summary ............................................................ 160
9 A Capacitive Charge Pump Based Low Power
Pipelined ADC .......................................................... 163
9.1 Overview ............................................................ 163
9.2 Motivation .......................................................... 164
9.3 Architecture: Capacitive Charge Pump Based Gain ............... 164
9.4 Effect of Parasitic Capacitors ....................................... 168
9.5 Unity Gain Buffer Topology ....................................... 170
9.5.1 Linearity of Source Follower in a Sampled System ......... 175
9.5.2 Signal Swing of Source Follower ............................ 176
9.6 Noise Analysis of Capacitive Charge Pump Based MDAC ....... 177
9.7 Calibration of Pipeline Stages ...................................... 181
9.7.1 Foreground Calibration in Detail ............................. 181
9.8 Theoretical Power Savings ......................................... 183
9.9 Design Specifications ............................................... 185
9.10 Circuit Design ..................................................... 186
9.10.1 ADC Top Level Topology ................................ 186
9.10.2 Front-End Sample-and-Hold .............................. 187
9.10.3 MDAC and Unity Gain Amplifier . . ...................... 187
9.10.4 Sub-ADC .................................................. 189
9.10.5 Digital State Machine ..................................... 190
9.10.6 Analog Test-Mux .......................................... 190
9.11 Testing ............................................................. 191
9.11.1 PCB ........................................................ 191
9.11.2 Test Setup ................................................. 191
9.12 Measured Results .................................................. 193
9.12.1 Measured ADC SNDR Variation . . . ...................... 194
9.12.2 ADC FFTs ................................................. 196
9.12.3 INL/DNL plots ............................................ 199
9.13 Summary ........................................................... 199
10 Summary ................................................................ 201
10.1 Summary ........................................................... 201
References .................................................................... 203
Index .......................................................................... 209
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

初翻阅目录时,我的第一反应是:“这结构安排得太精妙了,简直像一把万能钥匙打开了整个领域的大门。” 目录页面的布局逻辑性极强,每一章的标题都不是简单地罗列技术名词,而是用一种富有层次感的语言,引导读者逐步深入。你会发现,从最基础的概念铺垫,到核心算法的详尽拆解,再到高级的优化策略和实际应用案例,过渡得丝滑自然,几乎没有生硬的跳跃。作者显然是花费了大量心血来构建这个知识的“骨架”。特别是看到那些细分的章节名,比如关于噪声抑制和功耗管理的专题部分,那种对细节的把控能力令人印象深刻。它不像某些技术书籍那样,把所有知识点堆砌在一起,而是进行了极富洞察力的分类和组织。这种精心设计的章节脉络,极大地降低了初学者进入这个复杂领域的门槛,同时也为资深工程师提供了快速定位和查阅特定高级模块的便利。它不仅仅是一本书,更像是一份结构化的学习路线图。

评分

这本书的封面设计简直是教科书级别的典范,那种严谨而又充满信息量的排版风格,立刻让人感受到它在技术深度上的分量。我拿到手时,首先被它厚实的质感和精美的印刷质量所吸引。色彩搭配上,没有过多花哨的装饰,以冷静的蓝灰色调为主,辅以清晰的白色文字,营造出一种专业、可靠的学术氛围。封面上除了书名外,没有多余的宣传语,这一点非常得我心,它似乎在无声地宣告:“内容为王,无需多言。” 这种内敛的设计哲学,恰恰说明了作者对自身内容的绝对自信。细节之处,比如封底对作者背景的简要介绍,虽然篇幅不大,但字里行间透露出的行业资历和学术成就,让人对正文内容充满了期待。整体而言,这是一个将“形式服务于内容”做到极致的实体呈现,极大地提升了阅读的仪式感和对知识的敬畏感。如果说一本好书是思想的载物,那么这本精装本就是一座坚固可靠的知识殿堂的大门。

评分

这本书的写作风格是极其严谨且富有探索精神的结合体。作者在阐述原理时,语气坚定而客观,毫不含糊地直面复杂性,不回避技术难点。但有趣的是,在介绍完一种标准方法后,紧接着就会出现对该方法局限性的深入剖析,并自然而然地引出“我们如何能做得更好?”的思考路径。这种“批判性介绍”的手法,极大地激发了读者的求知欲。它不是简单地罗列“是什么”,而是深入挖掘“为什么是这样”,以及“有没有更好的替代方案”。书中对于数学推导的严谨性毋庸置疑,每一个变量的引入、每一步的变换都有据可循,保证了理论推导的无懈可击。这种既扎实又充满探索欲的叙事风格,让这本书读起来既像是一份权威的参考手册,又像是一次深入前沿的智力冒险。

评分

阅读体验方面,这本书的排版简直是一场视觉上的享受,体现了出版社对技术书籍排版规范的深刻理解。字体的选择非常考究,正文采用了一种清晰易读的衬线体,确保了长篇阅读时的舒适度,长时间盯着密集的公式和文字也不会感到眼睛疲劳。行距和段落间距拿捏得恰到好处,为思考留出了足够的“呼吸空间”。更值得称赞的是图表的质量,插图和示意图的清晰度极高,线条锐利,标注清晰,即便是最复杂的系统框图也能一目了然。很多关键公式后面,作者还会附带简短的解释性文字,避免了纯数学表达带来的抽象感。这种对阅读体验的关注,在很多技术书籍中是缺失的。它让人感觉到,作者不仅是一位技术专家,更是一位优秀的“知识传达者”,深知如何将晦涩的理论转化为易于理解的视觉和文字信息。

评分

如果你在寻找一本能够真正帮助你提升实战能力的参考书,那么这本书的案例和附录部分绝对是点睛之笔。它没有停留在纯理论的空中楼阁上,而是通过一系列精心挑选的工程实例,将书本上的知识“落地”到实际的芯片设计流程中。这些案例的深度和广度令人印象深刻,它们覆盖了从概念设计到实际布局布线的诸多关键环节,提供了许多教科书上难以见到的“工程经验之谈”。尤其是附录部分,那些常用的设计规范清单和快速自检流程,对于正在进行项目的人来说,简直是救命稻草。这些附加材料的价值,甚至不亚于正文的核心内容,它们极大地缩短了理论到实践的转化时间。这本书的价值,在于它不仅教会你原理,更教会你如何带着这些原理在真实世界的工程挑战中取得成功。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有