图书标签: 数学 Mathematics K理论 C*代数 Algebra 其余代数7 mathematics Math
发表于2024-11-22
K-Theory and C*-Algebras pdf epub mobi txt 电子书 下载 2024
K-theory is often considered a complicated 'specialist's' theory. This book is an introduction to the basics and provides detailed explanation of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed and then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity. Of specific interest to algebraists and geometrists, the book aims to give full instruction. No details are left out in the presentation and many instructive and generously hinted exercises are provided. Apart from K-theory, this book offers complete and self contained expositions of important advanced C*-algebraic constructions like tensor products, multiplier algebras and Hilbert modules.
今天和办公室印度哥们儿说我一晚上刷完了这书,把他给惊得,半天没理我:D感觉这书写得虽然长,但看起来并不怎么费劲儿,写作的风格有点儿像Spivak的那五卷,读起来不至于那么枯燥~~
评分今天和办公室印度哥们儿说我一晚上刷完了这书,把他给惊得,半天没理我:D感觉这书写得虽然长,但看起来并不怎么费劲儿,写作的风格有点儿像Spivak的那五卷,读起来不至于那么枯燥~~
评分今天和办公室印度哥们儿说我一晚上刷完了这书,把他给惊得,半天没理我:D感觉这书写得虽然长,但看起来并不怎么费劲儿,写作的风格有点儿像Spivak的那五卷,读起来不至于那么枯燥~~
评分今天和办公室印度哥们儿说我一晚上刷完了这书,把他给惊得,半天没理我:D感觉这书写得虽然长,但看起来并不怎么费劲儿,写作的风格有点儿像Spivak的那五卷,读起来不至于那么枯燥~~
评分今天和办公室印度哥们儿说我一晚上刷完了这书,把他给惊得,半天没理我:D感觉这书写得虽然长,但看起来并不怎么费劲儿,写作的风格有点儿像Spivak的那五卷,读起来不至于那么枯燥~~
对于一个不带单位元的C*-代数A,我们可以把它进行单位化,这大致有两种方法,一是纯代数意义上的单位化,二是算子意义的单位化,后者就将导出本文的主角乘子代数(multiplier algebra)。 先看纯代数的单位化,那么就是考虑A⊙C,定义乘积为(a,λ)(b,μ)=(ab+μa+...
评分对于一个不带单位元的C*-代数A,我们可以把它进行单位化,这大致有两种方法,一是纯代数意义上的单位化,二是算子意义的单位化,后者就将导出本文的主角乘子代数(multiplier algebra)。 先看纯代数的单位化,那么就是考虑A⊙C,定义乘积为(a,λ)(b,μ)=(ab+μa+...
评分对于一个不带单位元的C*-代数A,我们可以把它进行单位化,这大致有两种方法,一是纯代数意义上的单位化,二是算子意义的单位化,后者就将导出本文的主角乘子代数(multiplier algebra)。 先看纯代数的单位化,那么就是考虑A⊙C,定义乘积为(a,λ)(b,μ)=(ab+μa+...
评分对于一个不带单位元的C*-代数A,我们可以把它进行单位化,这大致有两种方法,一是纯代数意义上的单位化,二是算子意义的单位化,后者就将导出本文的主角乘子代数(multiplier algebra)。 先看纯代数的单位化,那么就是考虑A⊙C,定义乘积为(a,λ)(b,μ)=(ab+μa+...
评分对于一个不带单位元的C*-代数A,我们可以把它进行单位化,这大致有两种方法,一是纯代数意义上的单位化,二是算子意义的单位化,后者就将导出本文的主角乘子代数(multiplier algebra)。 先看纯代数的单位化,那么就是考虑A⊙C,定义乘积为(a,λ)(b,μ)=(ab+μa+...
K-Theory and C*-Algebras pdf epub mobi txt 电子书 下载 2024