Quantitative Methods in Derivatives Pricing

Quantitative Methods in Derivatives Pricing pdf epub mobi txt 电子书 下载 2026

出版者:Wiley
作者:Domingo Tavella
出品人:
页数:304
译者:
出版时间:2002-04-19
价格:USD 99.00
装帧:Hardcover
isbn号码:9780471394471
丛书系列:
图书标签:
  • 金融
  • kyo
  • Finance
  • 金融工程
  • 期权定价
  • 金融数学
  • 随机过程
  • 数值方法
  • 利率模型
  • 风险管理
  • 金融衍生品
  • 计量金融
  • Black-Scholes模型
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This book presents a cogent description of the main methodologies used in derivatives pricing. Starting with a summary of the elements of Stochastic Calculus, Quantitative Methods in Derivatives Pricing develops the fundamental tools of financial engineering, such as scenario generation, simulation for European instruments, simulation for American instruments, and finite differences in an intuitive and practical manner, with an abundance of practical examples and case studies. Intended primarily as an introductory graduate textbook in computational finance, this book will also serve as a reference for practitioners seeking basic information on alternative pricing methodologies. Domingo Tavella is President of Octanti Associates, a consulting firm in risk management and financial systems design. He is the founder and chief editor of the Journal of Computational Finance and has pioneered the application of advanced numerical techniques in pricing and risk analysis in the financial and insurance industries. Tavella coauthored Pricing Financial Instruments: The Finite Difference Method. He holds a PhD in aeronautical engineering from Stanford University and an MBA in finance from the University of California at Berkeley.

衍生品定价中的定量方法(Quantitative Methods in Derivatives Pricing) 一本深入探究金融工程与市场建模核心概念的权威著作 内容概述 本书全面系统地阐述了衍生品定价领域的核心数学工具、随机过程理论以及数值计算方法。它不仅仅是一本教科书,更是一本为量化金融从业者、风险管理者和高级经济学研究人员量身定制的实践指南。全书结构严谨,从基础的概率论和随机微积分出发,逐步过渡到复杂的衍生品定价模型和前沿的量进阶技术。 本书的叙事逻辑旨在构建一个坚实的理论框架,使读者能够理解现代金融市场中衍生工具的价值是如何被精确量化和管理的。我们摒弃了对已知公式的简单罗列,转而深入剖析支撑这些公式的随机力学原理。 第一部分:基础与随机分析的基石 本部分为后续复杂模型建立必要的数学基础。我们首先回顾了测度论在概率论中的关键作用,特别是关于条件期望和鞅的定义,这对于理解无套利定价至关重要。 随机过程的严谨引入: 我们对布朗运动(Wiener过程)进行了深入的考察,详细讨论了其路径的连续性、独立增量性以及二次变差的性质。重点放在了伊藤积分的定义与性质上,这是连接连续时间金融模型与随机分析的桥梁。伊藤引理(Itô’s Lemma)作为核心工具被详尽阐述,并辅以大量的金融应用实例,例如对几何布朗运动(Geometric Brownian Motion, GBM)的推导,这是Black-Scholes-Merton模型的基石。 随机微分方程(SDEs): 本部分耗费大量篇幅讲解求解SDEs的常用方法,包括欧拉-马尔可夫(Euler-Maruyama)方法进行数值逼近,以及利用特征函数进行解析解的探讨。通过对伊藤过程的深入理解,读者将能够构建描述资产价格动态的更复杂随机模型。 风险中性和鞅理论: 我们详尽地探讨了风险中性测度(Risk-Neutral Measure)的概念,证明了Girsanov定理在改变测度下的应用。理解在等价鞅测度下的定价原理,是确保衍生品定价满足无套利原则的理论核心。本节还包括了关于必要完备性(Necessity and Sufficiency of Hedging)的深入讨论。 第二部分:经典与扩展的扩散模型 本部分聚焦于最核心的扩散过程模型,并探讨如何利用这些模型来定价欧式和美式期权。 Black-Scholes-Merton (BSM) 模型深度剖析: 在回顾了BSM公式的推导后,本书着重分析了其背后的假设及其在实际市场中的局限性。我们详细推导了波动率的“微笑”和“倾斜”现象,这引出了对更精细模型的需要。 随机波动率模型(Stochastic Volatility): 鉴于金融市场中波动率本身是随机变化的观察,我们系统地介绍了Heston模型。本书详细推导了Heston模型的特征函数,并展示了如何利用傅里叶变换技术对其衍生品进行高效定价,特别是对不同到期日和执行价格的期权报价。我们还探讨了SABR (Stochastic Alpha, Beta, Rho) 模型在利率衍生品市场中的应用。 跳跃扩散模型(Jump-Diffusion Models): 认识到市场中的“黑天鹅”事件和非连续性价格变动,本书引入了Merton的跳跃扩散模型和Kou的双指数跳跃模型。我们清晰地阐述了这些模型如何通过泊松过程来模拟突发事件,并展示了定价公式如何从纯扩散模型演变为扩散与跳跃混合的形式。 第三部分:利率衍生品与固定收益定价 本部分专门针对固定收益工具和利率衍生品的建模,这要求对短期利率(Short Rate)的动态有更精确的刻画。 短期利率模型的演进: 我们从Vasicek模型(引入均值回归)出发,过渡到CIR模型(确保利率非负)。重点在于Cox-Ingersoll-Ross (CIR) 模型,并推导了其在零息债券定价中的应用。 Heath-Jarrow-Morton (HJM) 框架: HJM框架被视为利率建模的黄金标准之一。本书详细介绍了其核心思想——直接对远期利率而不是短期利率进行建模。我们讨论了如何确保HJM模型的瞬时漂移项满足特定的无套利条件,并展示了如何将其应用于远期利率协议(FRAs)、利率互换(Swaps)的无套利定价。 Libor 市场模型(LMM): 针对更现代、更具市场实证性的定价,本书详细讲解了LMM。我们分析了如何使用LMM对利率期权(如Caps, Floors和Swaptions)进行定价,并讨论了模型校准和波动率曲面的构建问题。 第四部分:数值方法与高级计算技术 尽管解析解在某些情况下可行,但对于大多数奇异期权和复杂模型,数值方法是不可或缺的。本部分提供了实现精确定价所需的计算工具箱。 偏微分方程(PDE)方法: 我们详细推导了衍生品定价所满足的偏微分方程——Black-Scholes PDE。随后,我们深入讲解了有限差分法(Finite Difference Method, FDM)在求解这些PDE中的应用,包括显式、隐式以及Crank-Nicolson方案的稳定性和收敛性分析。特别强调了如何使用FDM处理美式期权的早期行权问题(通过求解变分不等式)。 蒙特卡洛模拟(Monte Carlo Simulation): 蒙特卡洛方法因其处理高维和路径依赖期权的能力而至关重要。本书详尽介绍了基础的路径模拟技术,并着重讲解了降低方差的技术,如控制变量法(Control Variates)、重要性抽样(Importance Sampling)。 最小二乘蒙特卡洛(LSM)与路径依赖期权: 针对美式期权和亚洲期权等路径依赖产品,我们详细阐述了Longstaff-Schwartz最小二乘蒙特卡洛方法,该方法利用回归技术来确定最优的早期行权策略,是现代复杂衍生品定价的核心算法之一。 第五部分:信用风险与违约建模 本部分将视角从纯粹的市场价格风险扩展到信用风险,这是现代金融风险管理不可或缺的一环。 结构化模型(Structural Models): 我们从Merton的股权作为看涨期权的观点出发,分析了公司资产价值的随机演化,并推导了违约时间的概率。 简化模型(Reduced-Form Models): 重点介绍Jarrow-Turnbull框架,其中违约被建模为一个由风险中性强度过程驱动的具有强度率的泊松过程。我们讲解了如何利用市场上的信用违约互换(CDS)价格来校准这些模型的强度过程,并在此基础上对更复杂的信用衍生品(如CDOs)进行定价。 结论:理论与实践的融合 本书的最终目标是培养读者将抽象的数学理论转化为可操作的金融模型的实践能力。通过严谨的数学推导和对实际市场背景的深刻洞察,读者将能够自信地驾驭现代衍生品市场的复杂性,无论是进行模型开发、风险对冲,还是进行量化研究。本书是通往金融工程高阶领域的坚实阶梯。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

**一本金融数学的入门佳作,适合初学者打下坚实基础** 这是一本绝对值得推荐的金融数学入门读物。作为一名对量化金融领域充满好奇但缺乏系统性知识的读者,我在寻找一本能够循序渐进、深入浅出讲解衍生品定价理论的书籍时,被这本书深深吸引。其内容组织清晰,从基础的概率论和随机过程开始,逐步引入到Black-Scholes模型及其应用,再到更复杂的定价技术。作者并没有一开始就抛出晦涩难懂的公式,而是通过生动的案例和直观的解释,帮助读者理解每一个概念背后的逻辑。尤其让我印象深刻的是,书中对于风险中性定价的讲解,作者通过多步二叉树模型,将抽象的理论变得触手可及,使得我能够清晰地理解其背后的思想和推导过程。即便对于数学基础稍弱的读者,书中也提供了必要的补充材料和详细的推导步骤,确保读者能够跟得上进度。学习过程中,我发现这本书最大的优点在于其严谨的数学推导与金融直觉的完美结合。它不会为了数学的严谨性而牺牲金融意义的阐释,也不会为了通俗易懂而含糊不清。这种平衡使得学习过程既充实又富有启发性。书中穿插的习题也很有代表性,能够帮助读者巩固所学知识,并初步尝试解决实际问题。总而言之,如果你想开启量化金融的学习之旅,或者希望系统地梳理衍生品定价的知识体系,这本书绝对是你的不二之选。它不仅是一本书,更是一位优秀的引路人,为你铺就一条通往金融工程殿堂的坚实道路。

评分

**在复杂的世界中找到秩序:一本真正引发思考的衍生品定价深度探索** 阅读本书的过程,更像是一次与智识的对话,一次对金融世界底层逻辑的深刻探究。这本书并非简单的公式堆砌,而是致力于揭示衍生品定价背后更为本质的数学框架和金融直觉。它以一种令人惊叹的深度,剖析了从基本假设到高级模型的一系列复杂问题。作者在讲解中,不仅仅是罗列公式,更强调的是对每一个假设的审视,对每一个模型局限性的清晰认知。例如,在讨论连续时间模型时,作者深入探讨了伊藤引理的由来及其在金融建模中的重要性,并细致地分析了不同随机过程假设对定价结果的影响。书中对于风险对冲策略的讲解,更是将理论与实践紧密联系,使得读者能够理解如何在不确定性中寻找确定性。令人印象深刻的是,作者在阐述某些复杂概念时,会采用多种角度的解释,并通过对比不同的模型来凸显其各自的优劣和适用场景。这极大地帮助我避免了对单一方法的盲目信赖,培养了一种批判性思维。本书的语言风格严谨而富有逻辑,每一句话都经过深思熟虑,力求精确。虽然内容颇具挑战性,但其对金融市场动态和定价机制的深刻洞察,足以让任何有志于深入理解金融衍生品领域的读者欲罢不能。这不仅仅是一本教材,更是一部引领读者穿越金融复杂性的智力探险指南,它挑战你的思维,激发你的好奇,最终让你在纷繁的市场现象背后,看到清晰的数学秩序。

评分

**理论与实践的桥梁:一本启发性的金融工程工具箱** 这本书就像是为金融工程实践者量身打造的一本“工具箱”,它不仅提供了构建模型所需的严谨理论基础,更重要的是,它指导读者如何将这些理论转化为可操作的定价和风险管理策略。我尤其欣赏书中对于金融工程中一些核心工具的介绍,比如蒙特卡洛模拟在期权定价中的应用,以及如何设计有效的随机数生成器和方差缩减技术。作者在讲解这些技术时,并没有停留在概念层面,而是深入到算法的细节,并结合实际应用中的常见问题给出了详尽的解答。例如,在讨论美式期权的定价时,书中对各种近似方法进行了详细的比较分析,并探讨了在不同市场环境下哪种方法更为适用。这种实用主义的导向,对于希望将所学知识应用于实际交易和产品设计的读者来说,具有极高的价值。此外,书中对于模型校准和参数估计的讨论,也为读者提供了宝贵的实践指导。它教会我们如何在有限的数据中,找到最能反映市场真实情况的模型参数,并如何评估模型的拟合优度。阅读过程中,我不断地将书中的理论与我过往的金融从业经验进行对照,发现书中提供的方法和思路,能够有效地解决我在实际工作中遇到的一些难题。这本书的价值在于,它不仅仅告诉你“是什么”,更重要的是告诉你“怎么做”,并且在“怎么做”的过程中,不断地引导你去思考“为什么”。它是一本值得反复研读,并在实践中不断印证的宝贵参考书。

评分

**穿越迷雾的灯塔:为量化交易者量身定制的深度解析** 作为一名活跃在量化交易前沿的从业者,我一直在寻找一本能够真正帮助我理解和优化交易策略的书籍。而这本书,无疑是我近年来阅读过的最有价值的书籍之一。它并非泛泛而谈的理论介绍,而是聚焦于量化交易者最关心的核心问题:如何利用模型来捕捉市场机会,如何管理风险,以及如何应对复杂多变的交易环境。书中对于不同交易策略背后的数学原理进行了深入的剖析,例如高频交易中的统计套利,以及低频交易中的趋势跟踪和均值回归策略。作者在讲解这些策略时,不仅给出了具体的数学模型,更重要的是,它阐述了这些模型在实际交易中的适用性、优缺点以及可能遇到的挑战。我尤其欣赏书中关于“黑天鹅事件”和“尾部风险”的讨论,以及如何利用不同的模型来识别和对冲这些风险。这对于任何希望在不确定性市场中生存和发展的量化交易者来说,都至关重要。此外,书中对于回测和实盘交易中的一些常见陷阱的警示,也极具参考价值。它提醒我们在评估模型和策略时,需要保持高度的警惕,避免过度拟合和数据挖掘的误区。这本书的语言风格直接而精准,充满了对市场实践的深刻理解。它就像是一座灯塔,为迷失在量化交易迷雾中的我们,指明了方向。它不仅提供了实用的工具,更重要的是,它塑造了我们对量化交易的深刻认识,帮助我们构建更稳健、更具竞争力的交易体系。

评分

**对金融市场深层机制的洞察:一本挑战传统认知的里程碑式著作** 这本书给我带来的,远不止于对衍生品定价方法的学习,更是一种对金融市场运作机制的全新认知。作者以一种颠覆性的视角,审视了传统定价理论的局限性,并在此基础上构建了一个更加全面和深刻的分析框架。书中对信息不对称、交易成本以及市场微观结构等因素在定价过程中的影响进行了深入探讨,这使得我认识到,真实的金融市场远比一些简化的模型所描绘的要复杂得多。我尤其被书中对于“非理性”市场行为的建模和分析所吸引。作者并没有回避市场的“噪音”和“非效率”,而是试图将其纳入理论框架,从而获得更具解释力的定价模型。这种尝试,对于理解那些在传统理论下难以解释的市场现象,具有非凡的意义。书中对“行为金融学”与“理性定价模型”的结合,更是为我打开了一扇新的大门。它让我们看到了,如何在理解人性的弱点和群体行为的基础上,来构建更为稳健的定价和风险管理策略。阅读这本书的过程,是一种智力的挑战,更是一种思维的启迪。它促使我不断反思自己对市场的既有认知,并勇于探索那些尚未被充分理解的领域。这本著作,无疑是对衍生品定价领域的一次重要贡献,它不仅为我们提供了强大的分析工具,更重要的是,它启发我们以一种更宏观、更深刻的视角来理解金融世界的复杂性与魅力。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有