大代数(下)

大代数(下) pdf epub mobi txt 电子书 下载 2026

出版者:科学普及出版社,
作者:(英)H.S.霍尔, S.R.奈特
出品人:
页数:0
译者:席小云译
出版时间:1983-1985
价格:3.10
装帧:
isbn号码:
丛书系列:
图书标签:
  • 代数大
  • 数学
  • 初等代数
  • 代数
  • 数学
  • 高等数学
  • 抽象代数
  • 代数学
  • 数学教材
  • 大学教材
  • 数学分析
  • 理论数学
  • 学术著作
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

《方程的奇妙世界:从根源到进阶》 这是一部旨在为读者开启数学世界中最为迷人的一扇大门的著作,我们将在其中深入探索方程的本质、发展以及其在解决现实世界问题时的强大力量。本书的篇幅不长,但内容扎实,力求在有限的篇幅内,勾勒出一幅丰富而深刻的数学图景,让您在阅读之后,能够对“方程”二字不再感到陌生,甚至对其产生由衷的赞叹与浓厚的兴趣。 第一部分:方程的基石——古老的智慧与初生的萌芽 在远古时代,人类的生存与发展便与解决问题息息相关。当人们需要计算土地的面积、分配食物的数量、或者预测天象的周期时,一种对未知数量进行表示和求解的需求便油然而生。本书将带您穿越历史的长河,追溯方程思想的起源。我们将看到,在古巴比伦的泥板上,在古埃及的纸草卷上,都已闪烁着对线性方程和简单二次方程的初步探索。这些古老的文明,虽然没有现代代数的形式化语言,但他们通过具体的问题场景,已经孕育了方程的思想雏形。 接下来,我们将目光投向古希腊。伟大的欧几里得《几何原本》中,虽然侧重于几何的严谨证明,但其对比例、面积关系的探讨,也隐含着代数思想的萌芽。而阿基米德的著作,更是直接展现了如何运用几何方法求解某些代数问题。然而,真正将代数推向独立学科的,却是阿拉伯数学家。花拉子米的《代数学》(Al-jabr)一书,不仅为“代数”一词提供了词源,更系统地分类了各种方程,并提出了解方程的规则。我们将详细介绍他所提出的“归约”(al-jabr)和“对消”(al-muqabala)等基本方法,这些方法至今仍是我们理解和求解方程的基础。 然后,我们将进入中世纪欧洲。尽管这一时期欧洲的数学发展相对缓慢,但随着阿拉伯数学著作的翻译和传播,方程的思想逐渐在欧洲大陆生根发芽。一些早期的数学家,如斐波那契,在他的著作中也引入了阿拉伯的代数方法。本书将着重介绍这些早期探索的特点,以及它们为后来的数学革命所奠定的基础。 第二部分:代数的春天——从根号的解放到多项式的绽放 文艺复兴时期,欧洲数学迎来了前所未有的繁荣。方程的求解,尤其是三次方程和四次方程的求解,成为了当时数学界最为激动人心的挑战之一。本书将详述意大利数学家们,如塔尔塔利亚、卡尔达诺和费拉里,在求解三次和四次方程过程中所经历的传奇故事。我们将一步步地展示他们如何克服重重困难,最终找到了一般三次方程和四次方程的求解公式。这些公式的发现,不仅是数学史上的重大突破,更是人类智慧的结晶。 随着对高次方程求解的深入研究,数学家们开始意识到,并非所有的方程都能用根号的形式来表示其解。16世纪末,法国数学家韦达,在他的著作中引入了用字母表示未知数和系数的系统方法,极大地推动了代数的符号化进程。我们将探讨韦达的符号系统如何使得代数表达式更加简洁、通用,并且便于进行形式化的推理。 17世纪,笛卡尔将代数与几何完美地结合,开创了解析几何的新纪元。本书将阐述笛卡尔坐标系如何通过方程来描述几何图形,以及如何通过代数方法来研究几何性质。这种“代数几何化”的思路,极大地拓展了方程的应用范围,也为解决更复杂的问题提供了新的视角。 18世纪,牛顿和莱布尼茨创立了微积分,这为研究变量和变化率提供了强大的工具。虽然微积分本身并非直接研究代数方程,但它在求解微分方程、研究函数性质等方面,与代数方程的研究紧密相连,互相促进。本书将简要介绍微积分对代数思想的影响,以及如何在研究函数性质时运用代数方法。 第三部分:代数的深化——群论的诞生与抽象代数的启蒙 19世纪,数学家们在尝试求解五次方程时,遇到了前所未有的障碍。伽罗瓦,这位英年早逝的天才数学家,通过引入“群”的概念,彻底改变了人们对方程可解性的认识。本书将详细介绍伽罗瓦理论的核心思想。我们将解释什么是群,群的运算规则,以及如何利用群的结构来判断一个方程是否能够用根号来表示其解。伽罗瓦理论的诞生,标志着代数研究进入了一个全新的抽象阶段。 在伽罗瓦理论的影响下,抽象代数逐渐发展起来。本书将介绍一些基本的抽象代数概念,如群、环、域等。我们将解释这些抽象结构如何概括了我们从具体问题中提炼出的数学规律,并且如何在更广泛的领域中应用。例如,我们将看到群论在对称性研究、密码学等领域的应用,以及环和域的概念在数论和高等代数中的重要性。 第四部分:方程的现代应用——从理论到实践的飞跃 方程早已不再是数学家的专属玩具,而是渗透到我们生活的方方面面。本书的最后部分,将重点阐述方程在现代科学和工程技术中的广泛应用。 物理学: 从经典力学的牛顿定律,到量子力学的薛定谔方程,再到相对论的爱因斯坦场方程,方程是描述自然界基本规律的语言。我们将通过一些具体的例子,展示物理方程如何精确地预测现象,并指导科学研究。 工程学: 在土木工程中,结构力学方程用于计算桥梁和建筑物的稳定性;在电气工程中,电路方程用于分析电流和电压;在航空航天工程中,流体力学方程用于设计飞机和火箭。本书将介绍工程领域中常见的一些方程类型,以及它们如何被用来解决实际工程问题。 计算机科学: 算法的设计、数据结构的分析、图形的渲染,都离不开代数方程的支撑。例如,在计算机图形学中,矩阵运算(一种特殊的代数方程)被广泛用于三维模型的变换。在密码学中,数论中的同余方程起着至关重要的作用。 经济学与金融学: 经济学家使用数学模型,其中包含大量的代数方程,来分析市场趋势、预测经济走势,以及进行风险评估。金融工程师利用复杂的方程模型来定价金融衍生品、管理投资组合。 生物学与医学: 生物学家利用微分方程来模拟种群增长、疾病传播;医学研究人员使用统计模型和代数方程来分析药物疗效、预测疾病发展。 本书的宗旨,在于通过条理清晰的叙述和深入浅出的讲解,让读者理解方程不仅是一种数学工具,更是一种思考方式,一种解决问题的强大武器。我们希望,在您阅读完本书后,能够以全新的视角看待我们周围的世界,并且对数学这门学科,尤其是代数,产生更深刻的认识和更持久的热爱。无论您是初学者,还是已有一定数学基础的读者,都将在这趟探索方程奇妙世界的旅程中,有所收获。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书的阅读体验,可以被形容为一场漫长而艰苦的智力马拉松。我必须承认,有些章节我不得不放慢速度,甚至需要查阅大量的参考资料来辅助理解。它似乎默认读者已经具备了一定的预备知识,因此在某些关键的跳跃点上,解释得略显跳跃。这对于自学的人来说,挑战性陡增。我记得有一次为了理解某个泛函分析中的核心定理的推导过程,我花了整整一个下午,在白板上来回擦写,试图还原出作者省略掉的中间步骤。这种需要读者主动“填补空白”的设计,虽然增加了难度,但同时也极大地锻炼了我们独立解决问题的能力。它不是保姆式的教学,而是鼓励你成为一个真正的探索者。

评分

这本书,初拿到手时,那种厚重感和纸张特有的油墨香气,一下子把我拉回了大学时代,面对那些看似无穷无尽的公式和定理时的复杂心情。我记得当时为了搞懂矩阵的对角化,我足足啃了三天,桌子上堆满了草稿纸,每张纸上都写满了各种尝试和推导。这本书的排版和内容深度,无疑是对数学学习者的一次严峻考验,但也正是在这种层层剥茧的过程中,我才真正体会到了抽象数学美妙的逻辑链条是如何一步步构建起来的。它不是那种让你轻松翻阅的读物,更像是一位严厉的导师,要求你必须投入百分之百的专注和精力。每一次成功的证明,每一次对复杂概念的豁然开朗,都伴随着大量的思考和心力的付出,那种成就感是其他领域难以比拟的。这本书的价值,不在于它提供了多少现成的答案,而在于它逼迫你去思考,去建立属于自己的数学直觉和推理体系。

评分

说实话,当我打开这本厚厚的册子时,一股久违的“畏惧感”油然而生。这绝不是那种通俗读物能带来的体验,它需要的是一种近乎朝圣般的敬畏。我尤其欣赏它在引入高级概念时,那种循序渐进的铺垫,虽然过程显得冗长,但对于确保读者不会在某一刻“掉队”至关重要。比如,在处理一些涉及到拓扑空间或者更深层次代数结构的部分时,作者并没有直接跃到结论,而是通过一系列精心设计的例子和引理来夯实基础。这就像是攀登一座高山,每走一步都有明确的标记和休息点,确保你的体力能够支撑到最终的顶峰。我个人认为,对于那些希望真正掌握现代数学基础的人来说,这样的详尽性是不可或缺的,它提供的不仅仅是知识点,更是一种严谨的治学态度。

评分

坦白讲,这本书的重量和厚度,与其说是实体书,不如说更像是一块“知识的砖头”。对于通勤路上或者碎片时间阅读来说,它完全不适用,它要求你必须在一个安静、不受打扰的环境中,全身心地沉浸进去。它的语言风格是典型的学术化表达,精确、克制,几乎没有多余的修饰词,直指核心概念。每一次翻页,都仿佛在翻开一个需要被小心对待的知识密室。我尤其注意到书中对于符号定义的严苛性,作者在全书范围内对特定符号的用法保持了惊人的一致性,这在复杂的数学著作中,是保障阅读流畅性的重要因素。这本书,无疑是为那些准备好接受专业训练的学者和高年级学生量身定制的。

评分

这本书的内容,结构之严谨,令人赞叹。它仿佛是经过精密计算的建筑蓝图,每一个章节、每一个定理、每一个推论都像是承重结构中的关键一环,缺一不可。我特别喜欢它在理论建立完成后,总会附带一些应用领域的简要提及,哪怕只是点到为止,也极大地激发了我继续深入研究的兴趣。这种理论与实际应用的微弱连接,就像是黑暗中的一丝光亮,让人明白我们所学的所有抽象概念最终都是为了描述我们身处的这个世界。如果说学习数学是一场炼金术,那么这本书提供的,就是最纯净的原材料和最精密的提炼工具,剩下的火候控制,就全看读者自己的功力了。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有