S.G. Volume 2 - Calculus

S.G. Volume 2 - Calculus pdf epub mobi txt 电子书 下载 2026

出版者:PWS Pub. Co.
作者:Earl William Swokowski
出品人:
页数:0
译者:
出版时间:1999-12
价格:USD 27.75
装帧:Mass Market Paperback
isbn号码:9780534936273
丛书系列:
图书标签:
  • 微积分
  • 高等数学
  • Calculus
  • 数学
  • 教材
  • 大学教材
  • S
  • G
  • 学习
  • 理工科
  • 数学分析
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

S.G. Volume 1 - Foundations of Mathematical Analysis A Deep Dive into the Bedrock of Modern Mathematics This volume serves as the essential groundwork for advanced mathematical study, meticulously establishing the rigorous foundations upon which the edifice of modern analysis is built. Far removed from the procedural focus of introductory calculus, S.G. Volume 1 - Foundations of Mathematical Analysis delves into the underlying logic, set theory, and topological concepts that give calculus its undeniable certainty. It is a necessary prelude for any student aspiring to truly understand why mathematical statements hold, rather than merely how to manipulate symbols. Part I: The Language of Rigor – Sets, Logic, and Proof The initial section is dedicated to sharpening the reader's conceptual tools. We begin with a comprehensive treatment of Set Theory, moving beyond naive set descriptions to explore axiomatic systems, focusing particularly on the Zermelo-Fraenkel (ZF) axioms and the implications of the Axiom of Choice (AC). Detailed explorations are provided on operations on sets, relations (equivalence and order), and functions, emphasizing injectivity, surjectivity, and bijectivity with rigorous proofs. The transition to Formal Logic is seamless, establishing the framework for mathematical argumentation. We cover propositional logic, predicate logic, quantifiers, and the crucial techniques of direct proof, proof by contradiction, proof by contraposition, and mathematical induction (both standard and strong forms). Special attention is paid to the structure of mathematical definitions and theorems, ensuring the reader can parse complex mathematical statements with absolute precision. Examples drawn from elementary number theory are used extensively to solidify these foundational techniques before moving forward. Part II: The Real Number System – Constructing the Continuum This volume dedicates substantial effort to the meticulous construction of the real numbers ($mathbb{R}$), viewing them not as an assumed quantity, but as the logical culmination of earlier structures. We begin by revisiting the Natural Numbers ($mathbb{N}$) and Integers ($mathbb{Z}$), building them from set-theoretic principles (e.g., Peano axioms or set-theoretic definitions of ordinals). The core of this part lies in the Construction of the Rational Numbers ($mathbb{Q}$) via equivalence classes of ordered pairs of integers, followed by the rigorous construction of the Real Numbers ($mathbb{R}$). Two primary methods are explored in detail: construction via Dedekind Cuts and construction via Cauchy Sequences of rationals. The ensuing properties of $mathbb{R}$—including completeness (the Least Upper Bound Axiom), density, and the Archimedean property—are proven from first principles. This section concludes with an in-depth look at Irrational Numbers, including the transcendence of $e$ and $pi$, though focusing primarily on the algebraic proofs underpinning their existence within the established continuum. Part III: Sequences and Limits – The Essence of Convergence With the real line fully established, we move to the analytical core: Sequences. The definition of a limit ($epsilon-N$ definition) is introduced, analyzed, and applied with uncompromising rigor. Proofs demonstrating the convergence or divergence of various sequences are executed step-by-step, avoiding any reliance on intuitive leaps. Key theorems explored include: Monotone Convergence Theorem (MCT): Proof relying explicitly on the completeness of $mathbb{R}$. Cauchy Criterion for Convergence: Establishing internal criteria for sequence behavior. Bolzano-Weierstrass Theorem: Proving that every bounded sequence in $mathbb{R}$ has a convergent subsequence. This proof involves intricate partitioning arguments. Cauchy Sequences: Full analysis of the property and its equivalence to convergence in $mathbb{R}$. Furthermore, we introduce the concept of Series ($sum a_n$), distinguishing between absolute and conditional convergence. Detailed analyses of the Integral Test, Comparison Tests, Ratio Test, and Root Test are provided, each accompanied by rigorous justifications rooted in the definition of limits and inequalities. The subtle yet profound differences between convergence in $mathbb{R}$ and the behavior of sequences in metric spaces (introduced briefly as motivation) are highlighted. Part IV: Topology of the Real Line – Setting the Stage for Continuity The final segment of this volume bridges the gap between basic analysis and topology, demonstrating how concepts like open/closed sets are essential for defining continuity robustly. We rigorously define Open Sets in $mathbb{R}$ as unions of open intervals, and Closed Sets as their complements. Properties of these sets, including the density of rational numbers in $mathbb{R}$, are established. The concepts of Accumulation Points (Limit Points) and Compactness are introduced. Compactness is defined via the Heine-Borel theorem (finite subcover for open covers of closed and bounded sets) and its equivalence to sequential compactness (every sequence has a convergent subsequence). The importance of compactness—as a generalization of the Bolzano-Weierstrass theorem—is emphasized as a critical tool for proving existence theorems in later analysis. Prerequisites: A solid understanding of pre-calculus algebra and trigonometry is assumed. While no prior exposure to formal proofs is required, a willingness to engage deeply with definitions and logical structuring is paramount. This text is intentionally self-contained, requiring no prior introduction to analysis beyond high school calculus intuition. Target Audience: This volume is specifically designed for mathematics majors, physics students pursuing theoretical specialization, and computer scientists focusing on the mathematical foundations of algorithms, who require an airtight, axiomatic understanding of real analysis before proceeding to multivariable calculus or advanced topics. It eschews computational shortcuts in favor of conceptual mastery.

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

作为一名长期在工程领域工作的专业人士,我对数学工具的应用有着极其深刻的体会。在解决复杂的工程问题时,精确的数学模型和有效的计算方法是不可或缺的基石。这本书的书名“S.G. Volume 2 - Calculus”,让我立刻联想到其中可能包含的对于微积分在物理、工程、经济等众多领域应用的详尽讲解。我特别关注这本书是否能在理论推导的基础上,辅以大量贴近实际工程场景的案例分析。例如,在流体力学、结构力学、信号处理等方面,微积分的应用无处不在,能够清晰地展示这些理论如何转化为解决实际问题的强大工具,将是我最渴望看到的。我希望这本书能够深入浅出地解析那些复杂的数学公式,并说明它们在实际工程问题中的意义和作用。这本书的价值,不仅仅在于知识的传授,更在于它能激发我们运用数学思维去分析和解决现实世界中的各种挑战,从而提升我们的专业能力和创新能力。

评分

我是一名即将步入大学校园的学生,对于即将开始的高等数学学习充满了期待与些许紧张。我听说《S.G. Volume 2 - Calculus》是一本在学术界享有盛誉的教材,许多老师和学长学姐都对其评价颇高。我希望这本书能够为我打下坚实的基础,帮助我理解微积分的核心概念,例如极限、导数、积分等,并掌握它们的基本运算和应用。我特别关注书中在概念的引入上是否循序渐进,能否帮助我建立起直观的理解。同时,我也希望书中能够包含一些经典的证明过程,让我能够学习数学的严谨性,并逐渐培养出自己的数学推理能力。这本书能否成为我大学学习生涯中重要的“敲门砖”,将取决于它在内容深度、讲解清晰度以及习题设计上的表现。我期待它能够引领我进入数学的奇妙世界。

评分

我的孩子目前正在接受基础数学教育,我一直希望能为他提供一些优质的学习资源,帮助他培养对数学的兴趣和扎实的数学功底。虽然《S.G. Volume 2 - Calculus》的书名听起来颇具专业性,但我相信其背后蕴含的数学思想和方法,对于培养一个孩子的逻辑思维和解决问题的能力是极有益处的。我希望这本书能够以一种更具启发性和趣味性的方式来呈现微积分的概念,或许是通过一些生动形象的例子,或者是一些有趣的数学谜题,来激发孩子的学习热情。我尤其关注书中是否能够强调数学在日常生活中的应用,让孩子明白数学并非是枯燥的符号和公式,而是解决现实问题的重要工具。如果这本书能够帮助我的孩子建立起对数学的初步好感,并为他未来的数学学习打下积极的基础,那么它将是我们家庭的一笔宝贵财富。

评分

这本书的封面设计让我眼前一亮,简洁却又不失专业感,深蓝色的背景搭配银色的书名,散发出一种严谨求实的学术气息。当我翻开第一页,那种熟悉的墨水香伴随着纸张的触感,让我一下子回到了学生时代,埋头苦读的时光仿佛就在昨天。虽然我目前的工作与高等数学似乎没有直接关联,但对数学的热爱却从未减退。我一直认为,学习数学不仅仅是为了解题,更是为了锻炼逻辑思维能力,培养分析问题的能力,以及对抽象概念的理解能力。这本书的出版,无疑为像我一样仍怀揣着学习热情的人们提供了一个绝佳的机会。我尤其期待书中在某些经典数学问题上的深入探讨,例如那些历经数百年依然魅力不减的数学难题,它们背后蕴含的智慧和方法,总能带给我新的启发。我希望这本书能够帮助我重新拾起那些被遗忘的数学知识,甚至发现新的学习乐趣,体验那种从未知到已知的豁然开朗的喜悦。

评分

我是一名热爱挑战的自学者,总是对那些能够拓展思维边界的学科充满好奇。数学,特别是微积分,对我而言一直是一个既吸引人又充满挑战的领域。我曾经尝试过一些入门级的教材,但常常因为过于抽象的理论讲解或者缺乏清晰的逻辑脉络而感到困惑。我希望这本《S.G. Volume 2 - Calculus》能够提供一种不同于以往的学习体验。也许它在讲解基本概念时,会引入一些引人入胜的数学史故事,或者通过一些有趣的类比来帮助读者理解那些抽象的定义。我更期待书中能够提供一些精心设计的习题,这些习题不仅仅是检验理解程度,更能引导读者去探索数学的奥秘,培养独立思考和解决问题的能力。这本书如果能够帮助我建立起一个坚实的微积分知识体系,并激发我对数学更深层次的兴趣,那么它将是我今年最宝贵的学习伙伴。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有