Solitons and Instantons, Operator Quantization (Horizons in World Physics)

Solitons and Instantons, Operator Quantization (Horizons in World Physics) pdf epub mobi txt 电子书 下载 2026

出版者:Nova Science Pub Inc
作者:
出品人:
页数:0
译者:
出版时间:1987-04
价格:USD 140.00
装帧:Hardcover
isbn号码:9780941743006
丛书系列:
图书标签:
  • Solitons
  • Instantons
  • Operator Quantization
  • Quantum Field Theory
  • Mathematical Physics
  • Nonlinear Physics
  • Soliton Theory
  • Quantum Mechanics
  • Physics
  • Horizons in World Physics
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

《孤立子与瞬时子:算符量化》(世界物理视界系列) 本书深入探讨了现代物理学中两个深刻且相互关联的概念:孤立子(Solitons)和瞬时子(Instantons),并以算符量化的视角对其进行了详尽阐述。作为“世界物理视界”系列的重要组成部分,本书旨在为读者提供一个理解量子场论和统计力学中非微扰效应的全面框架。 第一部分:孤立子——稳定的非线性波 孤立子是经典和量子系统中出现的特殊类型的波,它们在传播过程中能够保持其形状和速度不变,并且在相互碰撞后能恢复原状。它们并非简单的线性叠加,而是非线性效应的自然产物。本部分将从以下几个方面展开: 孤立子的起源与基本性质: 我们将追溯孤立子概念的早期发展,从KdV方程(Korteweg-de Vries equation)等经典非线性偏微分方程的研究开始。 详细介绍孤立子的数学特征,包括其局域性、稳定性和非线性叠加的特点。 通过具体的例子,如Sine-Gordon方程,阐释孤立子的形成机制及其拓扑性质。 孤立子在物理系统中的体现: 凝聚态物理: 介绍孤立子在晶体缺陷、磁畴壁、以及某些低维材料(如一维链)中的物理意义和实验观测。 流体动力学: 探讨孤立子在水波传播(如著名的“永不衰减的波”)、以及某些非线性光学现象中的作用。 高能物理: 讨论与基本粒子模型相关的孤立子,例如在某些规范场论中存在的拓扑孤立子。 孤立子的数学工具: 逆散射方法(Inverse Scattering Method): 这是求解和分析许多可积非线性方程(包括产生孤立子的方程)的关键技术。我们将详细介绍其基本原理、求解步骤以及在孤立子理论中的应用。 Bäcklund变换: 介绍这种强大的数学变换,它可以生成新的精确解,从而发现新的孤立子及其相互作用。 Lax 对: 阐述Lax对的概念,它为研究可积系统提供了统一的框架,并与孤立子的演化密切相关。 第二部分:瞬时子——量子真空中的瞬时跃迁 瞬时子是瞬时(instantaneous)或瞬态(transient)的经典场构型,它们在量子场论中扮演着关键角色,尤其是在描述非微扰效应和真空结构方面。它们是真空态之间的一种“瞬时”跃迁,可以看作是经典真空中的“隧道”效应。本部分将聚焦于: 瞬时子的概念与定义: 我们将从量子力学中的隧道效应出发,引入瞬时子的概念,将其理解为在欧几里得时空(Euclidean spacetime)中的经典场构型。 详细解释瞬时子如何连接量子场论中不同的真空态,并揭示真空的多重性。 介绍瞬时子与杨 Mills 理论(Yang-Mills theory)等规范场论中的拓扑不变量(如theta项)的联系。 瞬时子的数学结构: 欧几里得路径积分(Euclidean Path Integral): 瞬时子是欧几里得路径积分中的重要贡献者,它们对应于积分中的经典构型。 瞬时子方程: 介绍瞬时子满足的经典场方程,以及如何寻找这些构型。 ADHM构造: 对于某些特定的规范理论(如SU(2)规范群),ADHM(Atiyah-Drinfeld-Hitchin-Manin)构造提供了一种系统地构建瞬时子解的方法。 瞬时子计算: 讲解如何利用瞬时子计算量子系统的非微扰效应,例如量子色动力学(QCD)中的某些物理量。 瞬时子在物理学中的应用: QCD: 瞬时子是理解QCD真空结构、零模式(zero modes)、以及某些低能现象(如U(1)对称性破缺)的关键。 相变: 在统计力学和场论中,瞬时子可以描述系统穿越相变的路径。 量子引力: 探索瞬时子在量子引力理论中的潜在作用,例如在弦理论和圈量子引力中的应用。 第三部分:算符量化——统一的数学框架 将孤立子和瞬时子的概念置于算符量化的框架下,可以更深入地理解它们的量子性质以及它们在量子场论中的行为。本部分将探讨: 算符代数与算符序: 介绍量子力学和量子场论中算符的性质、对易关系以及算符代数。 探讨算符在描述量子态、量子演化以及量子涨落中的作用。 算符方法在孤立子理论中的应用: 量子孤立子: 解释如何将孤立子概念推广到量子层面,例如通过算符代数来描述孤立子的产生和湮灭。 量子可积系统: 探讨算符方法如何用于分析量子可积系统,并揭示其与经典孤立子的联系。 算符方法在瞬时子理论中的应用: 瞬时子与量子算符: 阐述瞬时子如何在算符量化的框架下被理解,例如它们对量子算符期望值的影响。 算符代数与瞬时子计算: 讨论如何使用算符代数和算符序来精确计算瞬时子贡献的物理量。 拓扑量子场论(TQFT): 介绍拓扑量子场论,它将瞬时子和算符量化的概念相结合,为理解拓扑不变量和量子几何提供了强大的工具。 本书的写作风格严谨而清晰,力求在数学严谨性的基础上,兼顾物理图像的直观性。通过对孤立子和瞬时子两个核心概念的深入剖析,并运用算符量化的先进工具,本书为读者提供了一扇通往现代物理学前沿的窗口,帮助理解那些挑战经典物理直觉但又至关重要的现象。本书适合对理论物理、数学物理以及量子场论有浓厚兴趣的本科生、研究生及研究人员阅读。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

我被这本书的题目深深吸引。“Solitons and Instantons, Operator Quantization” 传递出一种精密而深邃的气息。我立刻联想到,这可能是一本关于如何用严格的数学方法来描述物理世界中那些非线性和量子现象的书籍。孤立子,我理解为一种特殊的、稳定的波,它能够在传播过程中保持其形状,这本身就充满了吸引力,因为在很多物理系统中,我们看到的波都会随着时间扩散或衰减。瞬子,则在我脑海中勾勒出一种在量子场论中,从一个真空态跃迁到另一个真空态的“瞬间”过程,这似乎暗示着一种对时间更精细的理解。而“算符量子化”,则直接指向了将经典力学中的物理量转化为量子力学中的算符,这是一个将宏观世界规律映射到微观世界的重要步骤。我渴望在这本书中,找到对这些概念的深入解析,它们如何被数学化,以及它们在物理学中扮演的关键角色,或许还能了解到它们在理解某些复杂的量子现象时所发挥的独特作用。

评分

这本书的封面设计就吸引了我,它散发着一种沉静而深邃的哲学气息,让人联想到宇宙的浩瀚以及其中隐藏的奥秘。我一直对那些能够挑战我们现有认知边界的理论物理学概念着迷,而“孤立子”和“瞬子”这两个词本身就充满了神秘感,暗示着一种超越寻常的物理现象。我猜想这本书的作者一定是一位对这些前沿领域有着深刻理解和独到见解的大师。我期望它能带领我深入探索那些在经典物理学框架下难以解释的现象,或许是黑洞边缘的奇特行为,又或者是宇宙早期演化过程中那些决定性的时刻。这本书的名字让我感觉到,它不仅仅是一本技术性的学术著作,更可能是一次思想上的冒险,一次对现实本质的追问。我希望它能够用清晰而引人入胜的语言,向我揭示这些复杂概念的本质,让我能够触摸到物理世界最深层的美丽和逻辑。我期待着在这本书中找到那些能够激发我灵感的洞见,能够让我用全新的视角去审视我们所处的世界。

评分

这本书的标题“Horizons in World Physics” 给我一种非常宏大的预感,它不仅仅局限于某一个狭窄的物理分支,而是可能涵盖了我们对宇宙理解的前沿地带。孤立子和瞬子,这两个词听起来就有一种“边界”的感觉,仿佛是自然界中那些特殊的存在,它们在某种意义上“保持着形态”,不受干扰地传播,或者是在量子场论中扮演着重要的角色,决定着某些物理过程的可能性。 我想象这本书会涉及一些非常前沿的理论物理概念,可能是关于弦理论、量子场论的深入探讨,或者是与宇宙学、高能物理相关的最新进展。它可能会解释一些我们日常生活经验之外的现象,例如在粒子碰撞中出现的特殊波形,或者是宇宙大爆炸时期的一些关键瞬间。 我希望这本书能够用一种既学术又富有启发性的方式,带领我遨游在这些物理学的“地平线”上,让我对宇宙的运作有更深刻的理解,并能够看到物理学研究的未来方向。

评分

读到“孤立子与瞬子,算符量子化”这个书名,我 immediately 联想到的是那些能够精确描述非线性现象的数学模型,以及在量子世界中,我们如何理解能量和动量的“量化”概念。我推测这本书会深入研究数学物理中的一些核心问题,特别是那些与非线性偏微分方程和量子场论相关的部分。孤立子,我猜想是那些在非线性介质中能够保持其形状和速度的稳定波包,而瞬子则可能是在量子场论中,表示真空到真空的一种瞬态跃迁。算符量子化,这个词则直接指向了将经典物理量转化为量子算符的过程,这正是量子力学的基石。我期待这本书能够提供清晰的数学推导和物理图像,帮助我理解这些抽象概念的含义,并能够看到它们在解决实际物理问题中的应用,例如在凝聚态物理、粒子物理甚至是一些数学分支中的体现。

评分

初次翻开这本书,书名“孤立子与瞬子,算符量子化”就扑面而来一股严谨而抽象的气息,仿佛是通往某个高深理论殿堂的密钥。我深知,这样的主题往往意味着数学的深度和概念的挑战,但这恰恰是我所追求的。我一直以来都对数学在描述物理世界中的力量感到惊叹,而算符量子化更是让我联想到量子力学这个充满魅力的领域。这本书的名字暗示着它将深入探讨如何用数学的语言来刻画那些在微观尺度上行为奇异的粒子和场,以及它们是如何在能量的层面上进行相互作用的。我猜测它会涉及一些高级的数学工具,比如群论、微分几何,甚至是某种形式的泛函分析。我希望这本书能够帮助我理解,那些看似抽象的数学结构是如何与我们赖以生存的物理现实紧密相连的。它或许会带领我穿越量子纠缠的迷雾,理解能量量子化的本质,并最终触碰到时空结构在微观层面的微妙之处。我期待着它能在我对量子世界的理解上,开辟出一条新的道路。

评分

评分

评分

评分

评分

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有