STM and AFM Studies on

STM and AFM Studies on pdf epub mobi txt 电子书 下载 2026

出版者:
作者:Samori, Paolo (EDT)/ Cicoira, F. (CON)/ Ebner, A. (CON)/ De Feyter, S. (CON)/ Gruber, H. J. (CON)
出品人:
页数:332
译者:
出版时间:
价格:$ 450.87
装帧:
isbn号码:9783540783947
丛书系列:
图书标签:
  • STM
  • AFM
  • Scanning Probe Microscopy
  • Surface Science
  • Nanotechnology
  • Materials Science
  • Thin Films
  • Characterization
  • Microscopy
  • Nanomaterials
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

STM and AFM Studies on Functional Nanomaterials: Unveiling Properties and Applications This book delves into the cutting-edge field of scanning probe microscopy (SPM), specifically focusing on Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM), as powerful tools for characterizing functional nanomaterials. It provides a comprehensive exploration of how these techniques, with their atomic-scale resolution, allow researchers to probe the intricate surface structures, electronic properties, and mechanical behaviors of a diverse range of nanoscale systems. The content is designed to be accessible to advanced undergraduates, graduate students, and researchers across materials science, physics, chemistry, and engineering, offering a blend of fundamental principles and practical applications. The initial chapters lay a strong foundation by introducing the fundamental principles behind STM and AFM. For STM, the book meticulously explains the quantum mechanical tunneling effect, the role of the tunneling current, and the various modes of operation, including constant current and constant height imaging. It discusses the critical aspects of probe preparation, tip-sample interaction, and the interpretation of tunneling spectroscopy data for electronic characterization. Similarly, for AFM, the text elaborates on the cantilever dynamics, different imaging modes such as contact mode, tapping mode, and non-contact mode, and the mechanisms of force detection. The unique advantages of AFM in imaging insulating materials and in probing a wide array of physical properties, from topography to friction and magnetic forces, are thoroughly highlighted. The importance of tip-sample interactions, including van der Waals forces, electrostatic forces, and capillary forces, is also addressed, providing a nuanced understanding of the imaging process. A significant portion of the book is dedicated to the application of STM and AFM in studying various classes of functional nanomaterials. This includes a deep dive into 2D materials, such as graphene, transition metal dichalcogenides (TMDCs like MoS₂, WS₂), and hexagonal boron nitride (h-BN). The book showcases how STM is instrumental in revealing atomic defects, grain boundaries, stacking orders, and charge density waves in these materials. AFM, on the other hand, is presented as a vital tool for measuring flake thickness, surface roughness, mechanical properties (like Young's modulus and fracture toughness), and adhesion forces. Examples of studies on the electronic band structure modifications due to strain or doping, as visualized by STM, are thoroughly discussed. The text then moves on to nanoparticles and quantum dots. It explains how STM and AFM can be used to image individual nanoparticles, determine their size distribution, and study their aggregation behavior. The book explores how STM can probe the electronic states of quantum dots, enabling the study of quantum confinement effects and single-electron charging phenomena. AFM is used to investigate the surface morphology of nanoparticle films, the interaction of nanoparticles with different substrates, and to measure local mechanical properties that might influence their performance in applications. Furthermore, the book extensively covers organic nanostructures and polymers. This includes self-assembled monolayers (SAMs), organic thin films, and polymer brushes. The ability of STM to image the molecular ordering and packing in SAMs, and to detect modifications in electronic properties upon chemical functionalization, is a key theme. AFM is demonstrated as an indispensable tool for mapping the topography of polymer surfaces, studying the morphology of nanostructured polymers, and characterizing their viscoelastic properties at the nanoscale. The book provides detailed examples of how these techniques help in understanding surface interactions, molecular orientation, and supramolecular assembly in organic systems. A dedicated section addresses hybrid nanomaterials and interfaces. The book illustrates how STM and AFM are crucial for understanding the complex interplay between different components in hybrid systems, such as nanoparticle-decorated surfaces or organic-inorganic heterostructures. The ability to perform spatially resolved measurements at interfaces, revealing changes in electronic properties, charge transfer, and mechanical compatibility, is emphasized. This section also touches upon studies of functional surfaces prepared via techniques like chemical vapor deposition (CVD) or atomic layer deposition (ALD), where STM and AFM are used to assess film quality, uniformity, and defect density. Throughout the book, emphasis is placed on the interpretation of SPM data. Readers will find detailed discussions on how to correlate observed topographical features with underlying physical and chemical properties. The book guides readers on how to identify artifacts, understand the limitations of each technique, and combine STM and AFM data with other characterization methods for a more complete understanding of nanomaterials. Case studies and examples from recent scientific literature are integrated to illustrate the practical application of the discussed concepts and to highlight the breakthroughs achieved using STM and AFM in the study of functional nanomaterials. The challenges and future directions in SPM for nanomaterials research are also briefly touched upon, encouraging further exploration and innovation. The aim is to equip readers with the knowledge and understanding necessary to effectively utilize STM and AFM in their own research endeavors, paving the way for the design and development of next-generation functional nanomaterials.

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

对于那些在材料科学或纳米技术领域摸爬滚打多年的研究人员来说,这本书就像是一场久旱逢甘霖的知识补给。它的结构安排非常人性化,从基础原理的梳理到前沿应用的剖析,过渡自然,毫无生硬感。作者在构建论证体系时,展现出了惊人的洞察力,特别是对于某些长期存在的争议性问题,书中给出了极具说服力的见解和佐证。我个人对其中关于动态过程监测的部分印象尤为深刻,作者对时间分辨能力的描述,简直让人叹为观止,清晰地揭示了瞬态现象背后的物理机制。每一次翻阅,都能发现新的侧重点和新的启发,这绝非一本可以“一读而过”的书籍,它要求读者投入心神,进行深层次的对话和反思。它带来的不仅仅是知识的增量,更是思维方式的优化和提升,对于提升实验设计和数据解释的质量有着立竿见影的效果。

评分

说实话,我一开始对这种高度专业化的书籍总是抱持着一丝敬畏和审慎的态度,生怕内容过于晦涩难懂,结果这本书彻底颠覆了我的预期。它在保持专业深度的同时,展现出一种令人惊叹的叙事流畅性。作者似乎非常擅长将那些极其复杂的概念,用一种近乎诗意的方式娓娓道来。整个阅读体验如同跟随一位技艺高超的向导,深入一片充满未知却又无比迷人的科学领地。书中对不同材料体系在特定环境下的行为分析,简直是教科书级别的典范。我特别注意到,作者在讨论实验结果时,总是能跳出纯粹的数据堆砌,上升到对物质本征属性的深刻理解,这正是区分优秀著作和平庸记录的关键所在。读完后,我不仅对某些关键技术有了更扎实的把握,更重要的是,它激发了我对那些尚未解决问题的强烈好奇心和探索欲。这本书的价值,在于它不仅仅传授了知识,更点燃了探索的火花。

评分

哇,刚刚读完这本让我深思的著作,它简直就是一本知识的宝库,尤其是对于那些渴望在微观世界探索奥秘的同仁来说。作者的笔触细腻入微,仿佛能带着我们穿梭于原子与分子之间,亲眼见证那些在宏观尺度下无法察觉的奇妙现象。书中对实验方法的阐述详实而深入,那种对细节的执着追求,让人不得不佩服作者深厚的学术功底。我尤其欣赏的是,作者并未止步于描述性的记录,而是巧妙地将理论框架与实际观测紧密结合,使得复杂的物理图像变得清晰易懂。那些关于表面形貌、力学性质以及电学特性的分析,逻辑严密,层层递进,让人在阅读过程中不断产生“原来如此”的顿悟感。它不仅仅是一本技术手册,更是一部充满洞察力的学术探索之旅,读完之后,感觉自己的研究视角都得到了极大的拓宽,对于未来研究方向的规划也更有底气了。这本书无疑是该领域不可多得的经典之作,我强烈推荐给所有对此领域感兴趣的读者,它绝对值得你花时间去细细品味。

评分

这本书的文字风格极其具有辨识度,它既有严谨的学术规范,又不乏一种冷静而富有穿透力的叙事魅力。它不像某些学术著作那样充斥着枯燥的术语堆砌,而是通过一系列精心挑选的案例和图示,将抽象的物理概念具象化。我尤其喜欢作者在讨论局域性质对整体宏观响应影响时的论述方式,那种将“局部”与“整体”进行辩证统一的视角,让人耳目一新。书中对新型探测模式的构建与应用进行了深入探讨,这部分内容极具前瞻性,让我对未来技术的发展方向有了更清晰的预判。阅读它,就像是进行了一次高强度的思维健美操,虽然需要集中注意力,但结束后带来的充实感和能力的跃升是无可比拟的。这本书绝对是该领域内,那种会不断被引用、被参考,并在未来很长一段时间内保持其影响力的重量级著作。

评分

这本书的出版,对于整个学科领域来说,无疑是一次重要的里程碑。我欣赏作者那种近乎苛刻的求真精神,体现在对每一个实验参数的精准控制和对每一个观测到的异常现象都不放过的探究上。阅读过程中,我仿佛能感受到作者在实验室中反复验证、不断推翻和修正的艰辛过程。书中对数据处理和误差分析的详尽讨论,更是体现了严谨的科学态度,这对于年轻的研究生来说,是无价的财富。它教会我们的不仅仅是“如何做实验”,更是“如何像一个真正的科学家那样思考”。特别是当涉及到一些跨学科的交叉点时,作者能够游刃有余地搭建起桥梁,使得不同背景的读者都能找到理解的切入点。总而言之,这是一部充满智慧、兼具实用性和理论深度的作品,它为后续的研究设定了一个非常高的基准线。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有