Characterization of Metals and Alloys (Materials Characterization)

Characterization of Metals and Alloys (Materials Characterization) pdf epub mobi txt 电子书 下载 2026

出版者:Butterworth-Heinemann
作者:
出品人:
页数:0
译者:
出版时间:1993-01
价格:USD 84.95
装帧:Hardcover
isbn号码:9780750692465
丛书系列:
图书标签:
  • 金属材料
  • 合金材料
  • 材料表征
  • 材料科学
  • 材料工程
  • 金属学
  • 显微组织
  • 力学性能
  • 物理性能
  • 材料测试
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Materials Science in the Modern Age: A Comprehensive Guide to Advanced Materials Engineering A deep dive into the frontiers of materials science, this volume provides a rigorous exploration of the theoretical foundations and cutting-edge applications of novel materials shaping contemporary technology. This text moves beyond the fundamental metallurgy and basic characterization techniques often covered in introductory texts. Instead, it focuses on the nuanced design, synthesis, and performance prediction of materials engineered for extreme environments and high-performance systems. It serves as an indispensable resource for graduate students, research scientists, and industrial engineers seeking to master the complexities of next-generation material systems. Part I: Theoretical Underpinnings and Computational Materials Design The initial section establishes a robust theoretical framework necessary for understanding modern materials behavior, emphasizing predictive modeling over empirical observation. Chapter 1: Quantum Mechanics in Materials Simulation This chapter rigorously reviews the application of Density Functional Theory (DFT) and ab initio methods for predicting electronic structure, bonding characteristics, and defect energies in crystalline and amorphous solids. Emphasis is placed on advanced functionals, relativistic corrections, and the scaling challenges associated with simulating large unit cells relevant to heterogeneous catalysts and complex intermetallics. We detail computational protocols for accurately determining phase stability diagrams under non-equilibrium conditions, bridging the gap between theoretical prediction and synthesis feasibility. Chapter 2: Kinetic Theory and Non-Equilibrium Thermodynamics Moving beyond classical thermodynamics, this section explores the thermodynamic driving forces and kinetic barriers governing microstructural evolution under rapid processing routes. We analyze classical nucleation and growth theory within the context of additive manufacturing (AM) melt pools, focusing on the non-equilibrium phase separation phenomena. Specific attention is paid to the application of the CALPHAD (Calculation of Phase Diagrams) methodology, incorporating thermodynamic databases refined by machine learning algorithms to account for solution non-ideality in multicomponent high-entropy alloys (HEAs). Chapter 3: Multi-Scale Modeling: Bridging Length Scales This core chapter addresses the critical challenge of linking phenomena observed from the atomic scale to the macroscopic continuum. We delineate methodologies for Information Transfer: employing molecular dynamics (MD) simulations to feed parameters into phase-field models (PFM) that simulate grain growth and boundary migration. Furthermore, the integration of homogenization techniques, such as Representative Volume Elements (RVEs) used within the Finite Element Method (FEM), is explored for predicting the anisotropic mechanical response of composites with complex, architected microstructures. Part II: Advanced Synthesis and Processing of Functional Materials This section shifts focus to the deliberate creation of materials with tailored properties, concentrating on techniques that allow precise control over composition, defect concentration, and geometrical architecture. Chapter 4: Directed Energy Deposition (DED) and AM Microstructure Control This chapter provides an in-depth examination of Directed Energy Deposition (DED) processes, focusing specifically on the physics of melt pool dynamics and solidification kinetics in reactive metal systems. We analyze the formation of cellular and dendritic substructures, the suppression of detrimental phases like brittle intermetallics, and methods for in-situ alloying via powder feeding control. The chapter also covers post-processing thermal management strategies—such as Hot Isostatic Pressing (HIP) and tailored heat treatments—required to mitigate residual stresses and achieve target hardness/toughness combinations in large-scale AM components. Chapter 5: Epitaxial Growth and Thin-Film Architectures Focusing on electronic and optical applications, this section covers the intricacies of physical vapor deposition (PVD), particularly Pulsed Laser Deposition (PLD) and Molecular Beam Epitaxy (MBE). We detail the control parameters necessary to achieve atomically sharp interfaces, manage lattice mismatch strain, and engineer superlattices with emergent properties (e.g., artificial magnetism or ferroelectricity). The discussion includes the challenges of managing stoichiometry control during the deposition of complex oxides and chalcogenides used in next-generation memory devices. Chapter 6: Processing of Advanced Ceramics and Composites This chapter explores high-temperature processing routes for non-metallic materials. It covers Spark Plasma Sintering (SPS) as a rapid densification technique for fine-grained ceramics, contrasting its kinetic advantages with conventional pressureless sintering. We delve into the synthesis of ceramic matrix composites (CMCs), emphasizing the design of interlocking fiber architectures (e.g., 3D woven architectures) and the selection of appropriate interfacial coatings (e.g., Boron Nitride nanotubes) to enable graceful failure mechanisms under extreme thermal loading. Part III: Performance Under Stress: Lifetime Prediction and Failure Analysis The final segment addresses the crucial aspect of ensuring material integrity throughout its service life, emphasizing degradation mechanisms in harsh operational settings. Chapter 7: High-Temperature Creep and Environmental Degradation This chapter moves beyond simple tensile testing to explore viscoplastic deformation mechanisms at elevated temperatures. We analyze steady-state creep governed by dislocation climb (Nabarro-Herring and power-law creep) and stress rupture phenomena in superalloys. Crucially, the chapter integrates environmental attack, detailing the interplay between creep and oxidation/hot corrosion (e.g., sulfidation) via the formation and spallation of protective oxide scales, including the concept of "pest" formation in certain refractory metals. Chapter 8: Fatigue Crack Initiation and Propagation Modeling Addressing cyclic loading scenarios, this section presents advanced models for fatigue life prediction, emphasizing the role of residual stresses and microstructure in crack initiation. We focus on the Paris Law framework, refining it through the incorporation of crack closure phenomena (e.g., load ratio effects and crack-tip shielding by secondary particles). The latter half is dedicated to the mechanics of short-crack growth, which often dictates the actual service life of components made from high-strength alloys where traditional long-crack theories break down. Chapter 9: Irradiation Damage in Nuclear and Space Applications This specialized chapter examines materials response to high-energy particle bombardment. We review the physics of defect creation (vacancies, interstitials, and their clusters) under neutron or ion irradiation. The analysis covers microstructural changes, including radiation-induced segregation (RIS) at grain boundaries, void swelling kinetics, and the embrittlement mechanisms in structural steels and refractory alloys intended for fusion reactor environments. Mitigation strategies, such as microalloying to trap mobile defects, are critically evaluated. Conclusion: Integrating Design, Synthesis, and Performance The concluding chapter synthesizes the concepts presented, emphasizing a holistic, integrated approach to materials engineering where computational prediction guides synthesis, and performance data feeds back to refine theoretical models, driving the next generation of durable, efficient, and functional material systems.

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书的封面设计就有一种沉甸甸的学术感,封面的配色偏向深蓝和银灰,中央印着“Characterization of Metals and Alloys”几个字,旁边辅以“Materials Characterization”小字,看起来非常专业。我一直对金属材料很感兴趣,特别是它们在不同环境下的性质变化,了解到这本书涵盖了对金属和合金的“表征”,这让我充满了期待。我尤其好奇的是,书中对于“表征”这个概念是如何定义和展开的。它会不会涉及微观层面的晶体结构分析,比如X射线衍射(XRD)或者透射电子显微镜(TEM)的应用?还是更侧重于宏观性质的测试,比如拉伸强度、硬度、韧性等等?或者两者兼而有之,通过宏观表现去反推微观结构?这本书的副标题“Materials Characterization”更是加深了我的猜测,它暗示了这本书可能是一本材料科学领域的入门或进阶读物,为我们提供一套系统性的工具和方法论,来理解和评价金属材料的内在属性。我希望书中能有清晰的图示和案例分析,能够帮助我这种非专业背景的读者也能快速上手,理解那些复杂的概念。毕竟,对于金属这种我们日常生活中随处可见的材料,深入了解它们的“性格”和“行为”是一件非常有意义的事情。

评分

这本书的排版和字体给我一种非常踏实的感觉,没有花哨的装饰,只有严谨的学术内容。我最感兴趣的部分是关于“金属塑性变形”的表征。我们都知道,金属的塑性是其最重要的应用特性之一,但塑性是如何产生的?又是如何被量化的?这本书是否会深入剖析位错理论,并解释位错的运动如何影响材料的宏观力学行为?同时,对于“合金”中的固溶强化、沉淀强化、晶界强化等机制,书中是否会提供相应的表征手段来验证和量化这些强化效果?我希望作者能够结合实际的实验数据和显微图像,来展示这些理论的实际应用。例如,通过拉伸试验得到的应力-应变曲线,如何解读其中的屈服强度、抗拉强度、延伸率等参数,以及这些参数背后所关联的微观形变机制。我非常期待书中能够为我打开一扇通往金属材料微观世界的大门,让我能够更清晰地看到那些肉眼看不到的微观结构是如何决定材料的宏观性能的。

评分

这本书的封面设计虽然简洁,却给人一种沉稳而专业的感觉。我对书中关于“疲劳断裂”的表征部分尤为期待。金属材料在反复加载下,即使应力低于屈服强度,也可能发生疲劳断裂。这种失效模式在航空航天、机械制造等领域至关重要。我希望书中能够详细介绍如何进行疲劳试验,并解释疲劳寿命、应力幅、应力比等参数的意义。同时,我更关心书中是否会阐述疲劳裂纹的萌生和扩展机制,以及如何通过断口形貌分析来识别疲劳裂纹特征,例如疲劳辉纹。我希望能学习到如何运用各种表征技术,例如扫描电子显微镜(SEM),来观察疲劳裂纹的微观形貌,从而推断材料的疲劳性能。了解疲劳断裂的机理,对于设计更安全、更可靠的金属结构至关重要,我希望这本书能为我提供坚实的理论基础和实用的指导。

评分

这本书的封皮材质很有质感,捧在手里分量十足,一看就是一本值得深入研究的书籍。我对书中关于“扩散和原子迁移”的表征技术很感兴趣。金属材料的许多性能,如扩散退火、表面渗层、合金化等,都与原子在晶体中的扩散和迁移密切相关。我希望书中能介绍一些能够直接或间接表征原子扩散过程的技术。例如,是否会提及放射性同位素示踪法,通过监测放射性同位素的扩散来研究原子迁移的规律?或者是否会介绍二次离子质谱(SIMS)等表面分析技术,用来测量材料内部的元素分布,从而推断扩散的路径和速率?我对于理解原子尺度上的运动如何影响宏观材料性能感到非常着迷,我希望这本书能为我揭示这些微观过程的奥秘,并教会我如何通过科学的表征手段去“看见”这些肉眼无法捕捉的原子迁徙。

评分

拿到这本书,我立刻被它严谨的学术风格吸引了,装帧也非常精致,充满了专业感。我特别好奇书中对于“相变”的表征。金属和合金在加热或冷却过程中会发生各种相变,这些相变直接影响着材料的组织结构和性能。这本书是否会详细介绍如何通过差示扫描量热法(DSC)或差示热分析仪(DTA)来检测相变温度和相变焓?又是否会涉及X射线衍射(XRD)在识别不同相结构中的应用?例如,对于钢的奥氏体化、马氏体转变等关键相变过程,书中是否会提供详细的表征方法和解读指南?我一直对热处理工艺如何改变金属材料的性能非常感兴趣,而相变是热处理的核心。我希望这本书能够提供清晰的图表和实验数据,帮助我理解不同相变过程的微观机理,以及如何通过精确的相变控制来实现材料性能的优化。

评分

我被这本书的英文名称所吸引,“Characterization of Metals and Alloys (Materials Characterization)”,这表明它可能是一本非常全面的金属材料表征指南。我尤其想了解书中关于“晶界工程”的内容。晶界是金属材料中一个非常重要的结构单元,它对材料的力学性能、电学性能、甚至化学稳定性都有着至关重要的影响。这本书是否会深入探讨晶界本身的结构特性,以及如何通过各种表征技术来研究晶界?例如,是否会介绍高分辨透射电子显微镜(HRTEM)在观察晶界结构中的作用?又是否会提及EBSD(电子背散射衍射)技术,用于测量晶粒取向和分析晶界取向?我一直对如何通过控制晶界来优化材料性能感到好奇,例如,通过细化晶粒来提高材料的强度,或者通过改变晶界成分来提高材料的抗腐蚀性。我希望这本书能够提供详细的理论解释和实验方法,指导我如何运用表征技术去“设计”和“改造”材料的晶界,从而获得我所期望的材料性能。

评分

我拿到这本书后,首先被它的厚度所震撼,这绝对是一本内容翔实的著作。翻开目录,我看到了许多熟悉的术语,比如“显微组织分析”、“力学性能测试”、“无损检测”等等,这些都是金属材料研究中不可或缺的环节。但同时,一些我不太熟悉的词汇也映入眼帘,例如“表面分析技术”、“热分析方法”等,这让我意识到,这本书的深度可能远超我的初步想象。我非常好奇书中是如何将这些看似零散的表征技术有机地结合起来,形成一个完整的分析体系的。它是否提供了一种流程化的指导,教读者如何根据具体的材料问题,选择最合适的表征手段?再者,对于“合金”的表征,我特别关注书中是否会详细阐述不同合金元素对材料性能的影响,以及如何通过表征来优化合金成分和组织结构。比如,在航空航天领域,对材料的强度、韧性和耐高温性要求极高,本书在这方面是否有深入的探讨和相关的案例?我期待书中能够通过深入浅出的讲解,揭示金属材料“表里如一”的秘密,让我能够更深刻地理解材料科学的魅力。

评分

这本书的纸张质量很好,墨迹清晰,阅读体验很不错。我一直对金属材料的“失效分析”非常感兴趣,而“Characterization of Metals and Alloys”这本书,我觉得很可能在这方面提供了宝贵的线索。通常,材料的失效往往是其内在结构或性能出现问题导致的,而通过对失效材料的表征,我们可以找到失效的根源。我非常想知道书中是如何指导读者进行失效分析的。它是否会介绍断口形貌分析(SEM断口分析),通过观察断口来判断材料的断裂模式(如韧性断裂、脆性断裂、疲劳断裂等)?又是否会涉及腐蚀产物的分析,来判断材料是否遭受了化学侵蚀?对于合金材料,不同成分的合金在不同环境下的腐蚀行为差异很大,本书是否会提供相关的表征方法和案例研究?我期待书中能有详细的步骤和图示,帮助我理解如何像侦探一样,通过对失效材料的细致“体检”,还原其生前(失效前)的“病症”,从而为材料的设计和使用提供重要的参考。

评分

这本书的扉页简洁明了,书脊的字体清晰可见,散发着经典学术著作的韵味。我非常关注书中关于“应力腐蚀开裂”的表征。在许多苛刻的应用环境中,金属材料会同时承受应力和腐蚀介质的作用,这可能导致材料在远低于其屈服强度的应力下发生脆性断裂,即应力腐蚀开裂。这本书是否会介绍如何通过应力腐蚀试验来评估材料的抗应力腐蚀性能?它是否会涉及断口分析,以区分应力腐蚀断口与其他类型的断口?我尤其好奇书中是否会探讨应力腐蚀裂纹萌生和扩展的微观机制,以及如何通过材料成分、组织结构或表面处理来提高材料的抗应力腐蚀能力。我期待书中能够提供具体的实验方案和案例分析,帮助我理解在实际工程应用中,如何通过科学的表征手段来预测和预防金属材料的应力腐蚀失效。

评分

这本书的整体风格给人一种厚重而严谨的学术气息。我尤其期待书中关于“非破坏性检测(NDT)”的章节。在实际工程应用中,我们常常需要在不损坏被测样品的前提下,评估金属材料的内部缺陷或性能。本书是否会详细介绍各种NDT技术,如超声波检测(UT)、涡流检测(ET)、射线检测(RT)等?我希望书中不仅会介绍这些技术的原理,还会提供实际应用案例,展示如何通过这些方法来检测材料中的裂纹、气孔、夹杂等缺陷,以及如何评估材料的焊接质量、硬度等性能。对于材料的可靠性评估而言,NDT技术扮演着至关重要的角色。我希望这本书能够让我对这些技术有一个全面的认识,并理解它们在保障材料安全应用中的价值。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有