Logic, Algebra, and Computation (Nato a S I Series Series III, Computer and Systems Sciences)

Logic, Algebra, and Computation (Nato a S I Series Series III, Computer and Systems Sciences) pdf epub mobi txt 电子书 下载 2026

出版者:Springer
作者:Friedrich L. Bauer
出品人:
页数:0
译者:
出版时间:1991-10
价格:USD 154.00
装帧:Hardcover
isbn号码:9780387543154
丛书系列:
图书标签:
  • Logic
  • Algebra
  • Computation
  • Computer Science
  • Systems Science
  • Mathematical Logic
  • Algebraic Structures
  • Algorithms
  • Formal Systems
  • Discrete Mathematics
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Computation, Complexity, and the Foundations of Discrete Mathematics A Comprehensive Exploration of Theoretical Computer Science and Its Intersections with Abstract Algebra and Logic This volume delves into the bedrock principles that underpin modern computation, moving beyond mere algorithmic implementation to explore the fundamental limits and theoretical structures governing information processing. It provides a rigorous mathematical framework for understanding what can, and crucially, what cannot, be computed efficiently. The book is meticulously structured into three interconnected parts: Foundations of Computability, Complexity Theory and Resource Constraints, and Algebraic Structures in Information Theory. Each section builds upon the previous one, guiding the reader from abstract models of computation to the practical implications of resource limitations in real-world systems. Part I: Foundations of Computability This section lays the groundwork by examining the theoretical models that define the very concept of an algorithm. We begin with a deep dive into the Turing Machine Model, exploring its formal definition, variations (such as multi-tape and non-deterministic models), and its role as the universal model of computation. The exposition rigorously establishes the Church-Turing Thesis, discussing its philosophical significance and practical robustness across different computational paradigms. Following this, the focus shifts to the Lambda Calculus, presented as an alternative, functional foundation for computability. We analyze the untyped and simply-typed lambda calculi, emphasizing concepts such as $alpha$-conversion, $eta$-reduction, and fixed-point combinators ($mathbf{Y}$ combinator). The equivalence between Turing machines and lambda calculus is demonstrated through constructive proofs, solidifying the idea of computational universality. A significant portion of this part is dedicated to Decidability and Undecidability. The concept of a recursive function is formally introduced, leading directly to the Halting Problem. The proof of its undecidability is presented using diagonalization techniques, providing a concrete boundary for algorithmic solution. We explore Rice's Theorem, generalizing the undecidability result to properties of the language accepted by a Turing machine. Furthermore, the concept of recursively enumerable (r.e.) sets is explored, distinguishing between decidable, semi-decidable, and undecidable problems. The role of Gödel Numbering in encoding programs and data structures is detailed, facilitating the formal mapping between mathematical statements and computational processes. The exploration concludes with an introduction to Post Systems and Formal Grammars. We contrast context-free grammars (Chomsky Hierarchy Type 2) with context-sensitive and recursively enumerable languages, providing a bridge to formal language theory and compiler design. The relationship between the expressive power of these formal systems and the underlying computational power required to process them is clearly articulated. Part II: Complexity Theory and Resource Constraints Moving beyond whether a problem can be solved, Part II addresses how efficiently it can be solved. This section is dedicated to Computational Complexity Theory, the study of resource bounds necessary for computation. We begin with a formal definition of complexity classes based on time and space resources. The standard resource models—deterministic and non-deterministic Turing machines—are used to define the core classes: P (Polynomial Time) and NP (Non-deterministic Polynomial Time). Detailed analysis is provided on the significance of polynomial bounds as the demarcation between "tractable" and "intractable" problems. The central unresolved question in theoretical computer science, the P vs. NP Problem, is treated exhaustively. We formally define the concept of a Polynomial-Time Reduction ($le_p$) and use it to establish the class of NP-Complete problems. Cook's Theorem, proving the NP-completeness of the Satisfiability Problem (SAT), is rigorously derived. Following this, a suite of classic NP-Complete problems—including 3-SAT, Vertex Cover, Clique, Hamiltonian Cycle, and Subset Sum—are proven complete via reduction from SAT or other known complete problems. The implications of proving $ ext{P} = ext{NP}$ or $ ext{P} eq ext{NP}$ for cryptography, optimization, and mathematical proof are thoroughly discussed. The exploration extends into Space Complexity. The classes L (Logarithmic Space) and NL (Non-deterministic Logarithmic Space) are introduced, alongside PSPACE and EXPTIME. The connections between these classes are investigated, including the Savitch Theorem, which demonstrates that non-determinism does not yield greater power than determinism when sufficient polynomial space is available ($ ext{NPSPACE} = ext{PSPACE}$). Furthermore, the relationship between the polynomial hierarchy ($ ext{PH}$) and the quantified Boolean formulas (QBF) provides insight into complexity beyond $ ext{NP}$. We also examine techniques for coping with intractability, including Approximation Algorithms for optimization problems, and an introduction to Parameterized Complexity, which studies the complexity profile relative to specific structural parameters of the input instance. Part III: Algebraic Structures in Information Theory The final part bridges the gap between abstract computation and concrete information representation by examining the underlying algebraic structures that govern coding, error correction, and formal systems. While not focusing on Boolean algebra, this section explores abstract structures relevant to computational proofs and data integrity. A detailed analysis of Finite Fields ($ ext{GF}(q)$) is presented, focusing on their construction (quotient rings of polynomials over prime fields) and their essential role in modern coding theory. The discussion moves to Linear Codes, defining concepts such as Hamming weight, distance, and the fundamental Sphere-Packing Bound (Hamming Bound). We rigorously explore specific algebraic coding schemes, including Hamming Codes and Reed-Solomon Codes. The mathematical machinery—including parity-check matrices, syndrome decoding, and the use of polynomial interpolation—is developed from first principles to illustrate how abstract algebra directly translates into robust mechanisms for data transmission and storage error correction. Finally, the volume touches upon Algebraic Complexity Theory—the study of computing polynomials—and its connection to circuit complexity. Concepts like the Strassen Matrix Multiplication Algorithm are analyzed not just as an algorithm, but as a demonstration of how algebraic insights (tensor rank) can yield superior computational bounds compared to traditional combinatorial approaches. The Algebraic Decision Tree Model offers an alternative view on decision problems, contrasting it with the standard Turing machine model. Target Audience This text is designed for advanced undergraduate students, graduate students, and researchers in theoretical computer science, discrete mathematics, and mathematical logic. A solid background in abstract algebra (groups, rings, fields) and introductory analysis is assumed, allowing the text to maintain a high level of mathematical rigor throughout its presentation of computability, complexity, and algebraic coding theory. The integration of these disciplines provides a holistic understanding of computation's theoretical landscape.

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

我被这本书的标题——“Logic, Algebra, and Computation”,以及它所属的系列“Nato a S I Series Series III, Computer and Systems Sciences”深深吸引。这三者都是计算机科学的核心基石,我非常期待这本书能够将它们有机地结合起来,提供一个全面的理论视角。我猜测,书中很可能会从逻辑学的基本原理出发,阐述逻辑表达式如何构成计算的基础,以及形式逻辑在算法设计、程序验证和人工智能等领域的应用。紧接着,我对代数部分尤其感到好奇,想象书中会详细介绍各种代数结构,如群、环、域等,如何在密码学、编码理论、算法分析以及数据库设计中发挥关键作用。最后,“Computation”这个词,我期待书中能够深入探讨计算模型,如图灵机、lambda演算等,以及它们与逻辑和代数之间的深刻联系,并可能涉及到计算复杂性理论等前沿话题。我相信,这本书能够为我提供一个强大的理论工具箱,帮助我更深刻地理解计算的本质,并以一种更具数学严谨性的方式来分析和解决计算机科学中的复杂问题。这本书的深度和系统性,无疑会成为我在计算机科学领域深入探索的宝贵指引。

评分

我选择这本书,是因为它触及了我一直以来对计算机科学最根本的兴趣点:“Logic, Algebra, and Computation”。从它的题目和所属系列(Nato a S I Series Series III, Computer and Systems Sciences)可以看出,这本书旨在深入探讨这些核心概念。我非常好奇作者将如何阐述逻辑学作为计算理论的基石,比如形式逻辑如何被用来描述计算过程、证明算法的正确性,以及在人工智能领域扮演的角色。代数部分,我猜测书中会详细介绍各种代数结构,如群、环、域等,如何在算法设计、数据结构、编码理论、密码学等领域得到应用,以及它们如何为我们分析计算的性能和效率提供数学框架。而“Computation”本身,我期待书中能够深入探讨各种计算模型,如图灵机、Lambda演算等,并揭示它们与逻辑和代数之间的深刻联系。我认为,这本书能够帮助我构建一套严谨的理论体系,使我能够从更抽象、更本质的层面去理解计算的本质,并培养用数学的语言和思维来解决计算机科学问题的能力。这是一本能够真正提升我理论认知水平的著作。

评分

在我看来,一个好的计算机科学书籍,必然要深入到其最根本的理论层面,而“Logic, Algebra, and Computation”恰好触及了这个领域的核心。从其系列名称“Nato a S I Series Series III, Computer and Systems Sciences”可以判断,这是一部具有相当学术分量的著作。我个人对逻辑推理如何在计算机科学中扮演基石角色充满了好奇,期待书中能够详细阐述形式逻辑的表达能力和推理规则如何被应用到程序规范、算法证明以及人工智能的知识表示中。此外,代数在计算机科学中的应用范围极广,我希望书中能够深入介绍抽象代数结构(如群、环、域)如何为数据编码、密码学、算法分析等领域提供强大的数学工具,并且能够阐明这些代数概念与具体计算任务之间的联系。关于“Computation”本身,我猜想书中会探讨各种计算模型,例如图灵机、Lambda演算等,并分析它们的计算能力和局限性,同时也会强调这些模型与逻辑和代数之间的内在关联。我坚信,这本书能够帮助我构建起一套扎实的理论基础,让我能够以一种更抽象、更本质的视角来理解计算的本质,并提升我解决复杂问题的能力。

评分

这本书的封面设计着实吸引了我,简约的线条勾勒出抽象的逻辑符号和代数结构,让人对书中的内容充满了好奇。我一直对计算机科学的理论基础非常感兴趣,尤其是那些能够构建起整个数字世界的底层逻辑和数学原理。虽然我尚未深入阅读此书,但从其标题“Logic, Algebra, and Computation”以及副标题“Nato a S I Series Series III, Computer and Systems Sciences”可以推断,这本书很可能深入探讨了逻辑学、代数学与计算理论之间的深刻联系。我猜想,作者很可能从形式逻辑的严谨性出发,阐述了如何用数学语言精确描述计算过程,并进一步探讨代数结构在构建高效算法和理解复杂计算模型中的作用。我很期待书中能够解释那些隐藏在软件代码和硬件设计背后的精妙数学思想,比如如何用逻辑门电路实现复杂的运算,或者代数范畴论如何为程序证明提供强大的工具。这类书籍往往能够帮助读者跳出日常的编程实践,从更宏观、更抽象的层面理解计算的本质,培养一种“数学家的思维方式”来解决计算机科学中的问题。我相信,这本书会为我提供一个全新的视角,去审视那些我们习以为常的计算机技术,并从中发现更深层次的美感和智慧。我也希望能通过这本书,更好地理解计算的边界以及未来的发展方向,为自己的学术或职业生涯打下更坚实的基础。

评分

我一直对计算机科学的理论基石抱有浓厚的兴趣,而“Logic, Algebra, and Computation”这个书名恰好触及了我最关注的几个核心领域。虽然我还没有深入了解这本书的内容,但我可以从它的标题和所属的系列(Nato a S I Series Series III, Computer and Systems Sciences)推测出其深度和广度。我非常好奇作者是如何将抽象的逻辑推理、严谨的代数结构以及实际的计算过程融为一体的。我猜测,书中很可能探讨了形式逻辑如何作为计算的基础,比如如何将逻辑公式转化为可执行的计算指令,以及如何利用逻辑推理来证明算法的正确性。代数的部分,我希望能看到关于代数结构(例如群、环、域)在算法设计、数据结构和复杂系统建模中的应用。特别是“Computation”一词,它可能意味着书中会深入分析各种计算模型,并揭示它们与逻辑和代数之间的内在联系。我期待这本书能够提供一种全新的视角,让我能够更深刻地理解计算机科学的数学本质,并为我解决实际问题提供更强大的理论工具。我认为,一本能够将这三个如此重要的领域进行系统梳理和深入探讨的书,无疑会是计算机科学领域的一部重要著作,值得我仔细研读。

评分

当我看到“Logic, Algebra, and Computation”这个书名时,我的思绪立刻被引向了计算机科学的理论根基。结合它所属的系列——“Nato a S I Series Series III, Computer and Systems Sciences”,我判断这本书并非泛泛之作,而是要深入剖析这三个关键概念之间的内在联系。我非常想知道,作者是如何从逻辑学的严谨性出发,阐述形式逻辑在构建计算模型、设计算法以及验证程序正确性方面的作用。我期待书中能够详细介绍代数结构,如群、环、域等,如何在算法设计、数据编码、密码学等领域提供强大的数学工具,并解释这些抽象概念如何转化为具体的计算实践。而“Computation”这个词,我猜测书中会深入探讨不同的计算模型,例如图灵机、lambda演算等,并揭示它们与逻辑和代数之间的深层关联,也许还会涉及计算复杂性理论等前沿话题。我认为,这样一本能够将逻辑、代数与计算这三个看似独立但实则相互依存的领域进行系统梳理的书籍,对于任何想要深入理解计算机科学本质的读者来说,都是不可多得的宝贵资源。我期待通过阅读这本书,能够建立起一种更加深刻和系统化的理论认知,为我的学习和研究提供强大的支持。

评分

我被这本书的学术严谨性所吸引,从书名“Logic, Algebra, and Computation”和系列名称“Nato a S I Series Series III, Computer and Systems Sciences”来看,这显然是一部面向专业领域读者的著作,很可能涵盖了计算机科学中的核心理论概念。虽然我还没有机会翻阅正文,但我对书中将逻辑、代数和计算这三个看似独立却又紧密相关的领域联系起来的尝试感到由衷的赞叹。我揣测,作者很可能详细介绍了形式逻辑在计算机科学中的应用,例如命题逻辑、谓词逻辑在程序规范、程序验证和人工智能等领域的关键作用。同时,代数结构,如群、环、域等,在密码学、编码理论以及算法设计中扮演着至关重要的角色,我很想知道书中是如何将这些抽象的数学概念与具体的计算问题联系起来的。特别是“Computation”这个词,它暗示了书中可能会深入探讨计算模型,如图灵机、lambda演算等,以及它们与逻辑和代数之间的深层关系。我相信,这本书将为我提供一个深刻的理论框架,帮助我理解计算的本质,以及如何利用数学工具来分析和设计更高效、更可靠的计算系统。我期待书中能够提出一些具有开创性的观点,或者对现有理论进行更深入的剖析,从而拓展我的学术视野,并为我未来的研究提供灵感。

评分

这本书的题目——“Logic, Algebra, and Computation”,以及它在“Nato a S I Series Series III, Computer and Systems Sciences”系列中的位置,都预示着这是一部具有重要理论价值的著作。作为一名对计算机科学的底层原理充满好奇的学习者,我一直认为理解逻辑、代数和计算之间的关系是通往更深层次认知的重要途径。我非常期待书中能够深入探讨形式逻辑如何作为计算的理论基石,比如如何将逻辑推理的严谨性应用于程序证明和系统验证,以及逻辑门电路的实现原理。在代数方面,我猜想书中会介绍各种代数结构,如群论、环论等,在算法设计、编码理论、密码学以及数据结构中的重要作用,以及它们如何为我们分析计算的复杂性和效率提供数学工具。而“Computation”这个词,我希望书中能详细阐述不同的计算模型,比如图灵机、lambda演算,以及它们的计算能力和局限性,并揭示这些模型与逻辑和代数之间的内在联系。我相信,这本书能够帮助我建立起一套扎实的理论框架,让我能够从更抽象、更根本的层面去理解计算的本质,并培养一种用数学语言解决计算机科学问题的能力。这本书的深度和广度,无疑会为我未来的学术研究和职业发展带来巨大的启发和帮助。

评分

这本书的名字“Logic, Algebra, and Computation”,以及它所处的系列“Nato a S I Series Series III, Computer and Systems Sciences”,让我对它充满了期待。作为一个对计算机科学理论体系抱有浓厚兴趣的读者,我一直认为逻辑、代数和计算是构成这个领域最核心的三个支柱。我设想,这本书的作者很可能从逻辑学的角度出发,阐述了形式化方法在计算机科学中的重要性,比如如何用逻辑来定义计算的精确含义,以及如何使用逻辑推理来构建可靠的算法和验证软件的正确性。接着,我很期待书中能够详细介绍代数在计算机科学中的应用,这可能包括数理逻辑中的代数结构,也可能涵盖抽象代数在算法分析、数据编码以及密码学等方面的应用。最后,“Computation”这个词,我相信它会带领我们深入探讨计算的模型,例如图灵机、lambda演算等,并揭示它们与逻辑和代数之间的深刻关联。我希望这本书能够提供给我一套完整的理论框架,让我能够更深刻地理解计算的本质,并学会如何运用数学的语言和思维来分析和解决计算机科学中的复杂问题。这本书无疑能为我的学术研究和实践带来巨大的启发,让我能够以更广阔的视野去审视这个日新月异的科技领域。

评分

我选择这本书,很大程度上是被它所涵盖的三个核心概念所吸引:“Logic”、“Algebra”、“Computation”。从其所属的系列(Nato a S I Series Series III, Computer and Systems Sciences)来看,这本书并非是浅尝辄止的介绍,而是一部深入探讨计算机科学理论基础的学术著作。我对于逻辑如何成为计算的基石充满了好奇,想象书中会详细阐述形式逻辑在计算机科学中的关键作用,例如在程序设计、算法验证以及人工智能领域的应用。代数的部分,我期待能够看到抽象代数结构(如群、环、域)如何被巧妙地运用到算法设计、数据压缩、编码理论甚至量子计算等前沿领域。而“Computation”本身,我猜测书中会深入探讨各种计算模型,如图灵机、Lambda演算、以及更现代的计算范式,并阐明它们与逻辑和代数之间密不可分的联系。这本书的理论深度预示着它能够帮助读者建立起一套严谨的数学思维体系,从而能够更深刻地理解计算的本质,并以一种更抽象、更普适的方式来分析和设计计算机系统。我坚信,通过阅读这本书,我能够获得一种超越具体技术实现的、更本质的理解,为我在计算机科学领域更深层次的学习和研究打下坚实的基础。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有