Adsorption by Carbons

Adsorption by Carbons pdf epub mobi txt 电子书 下载 2026

出版者:Elsevier Science
作者:Bottani, Eduardo J./ Tascon, Juan M. D.
出品人:
页数:776
译者:
出版时间:2005-12-31
价格:USD 220.00
装帧:Hardcover
isbn号码:9780080444642
丛书系列:
图书标签:
  • 碳材料
  • 吸附
  • 吸附
  • 活性炭
  • 碳材料
  • 环境科学
  • 化学工程
  • 材料科学
  • 表面化学
  • 分离技术
  • 催化
  • 环境污染
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This book covers the most significant aspects of adsorption by carbons, attempting to fill the existing gap between the fields of adsorption and carbonaceous materials. Both basic and applied aspects are presented. The first section of the book introduces physical adsorption and carbonaceous materials, and is followed by a section concerning the fundamentals of adsorption by carbons. This leads to development of a series of theoretical concepts that serve as an introduction to the following section in which adsorption is mainly envisaged as a tool to characterize the porous texture and surface chemistry of carbons. Particular attention is paid to some novel nanocarbons, and the electrochemistry of adsorption by carbons is also addressed. Finally, several important technological applications of gas and liquid adsorption by carbons in areas such as environmental protection and energy storage constitute the last section of the book.

- the first book to address the interplay between carbonaceous materials and adsorption

- includes important environmental applications, such as the removal of volatile organic compounds from polluted atmospheres

- covers both gas-solid and liquid-solid adsorption

Adsorption by Carbons: A Deep Dive into the Science and Applications of Carbonaceous Adsorbents Introduction Adsorption, a surface phenomenon where molecules from a fluid phase (gas or liquid) adhere to a solid surface, is a fundamental process with far-reaching implications across various scientific and industrial domains. Among the myriad of adsorbent materials, carbons, particularly activated carbons, have emerged as indispensable workhorses due to their unique structural properties, remarkable adsorption capacities, and versatile applications. This comprehensive exploration delves into the intricate world of adsorption by carbons, unraveling the underlying scientific principles, detailing the synthesis and characterization of various carbonaceous adsorbents, and illuminating their diverse and impactful applications. The Science of Adsorption At its core, adsorption is driven by intermolecular forces between the adsorbate (the substance being adsorbed) and the adsorbent (the material doing the adsorbing). For carbonaceous adsorbents, these forces are primarily van der Waals forces, which arise from temporary fluctuations in electron distribution leading to transient dipoles. The effectiveness of adsorption is profoundly influenced by several factors: Surface Area and Porosity: Activated carbons are characterized by an exceptionally high surface area, often ranging from 500 to over 2500 m²/g. This vast surface area is a direct consequence of their intricate pore structure, which comprises micropores (<2 nm), mesopores (2-50 nm), and macropores (>50 nm). The distribution and size of these pores are critical, as they dictate the accessibility of the adsorbate molecules to the internal surface. Micropores are particularly important for adsorbing small molecules, while mesopores facilitate mass transfer and can accommodate larger species. Surface Chemistry: The chemical nature of the carbon surface plays a significant role in adsorption selectivity. While the carbon backbone itself is relatively non-polar, the presence of surface functional groups, such as oxygen-containing groups (e.g., hydroxyl, carboxyl, lactone) and nitrogen-containing groups, can introduce polarity and alter the adsorption behavior. These functional groups can participate in specific interactions, such as hydrogen bonding or electrostatic interactions, with polar adsorbate molecules, enhancing adsorption affinity and selectivity. Adsorbate Properties: The size, shape, polarity, and chemical structure of the adsorbate molecule significantly influence its adsorption onto carbons. Smaller, non-polar molecules generally exhibit stronger adsorption onto non-polar carbon surfaces. Conversely, polar molecules may be more strongly adsorbed by carbons with a higher density of polar surface functional groups. Adsorption Conditions: Temperature and pressure are critical thermodynamic parameters. Generally, adsorption is an exothermic process, meaning that lower temperatures favor higher adsorption capacities. For gas adsorption, increasing pressure also leads to increased adsorption. The presence of other competing adsorbate species in the fluid phase can also influence the adsorption of a target molecule, a phenomenon known as co-adsorption or competitive adsorption. Carbonaceous Adsorbents: Synthesis and Characterization The remarkable adsorption properties of carbons are largely a result of their careful synthesis and activation processes, which generate their characteristic porous structure and tune their surface chemistry. Raw Materials: A wide variety of carbonaceous precursors can be used, including biomass (wood, coconut shells, agricultural waste), coal, petroleum coke, and synthetic polymers. The choice of precursor influences the initial structure and composition of the carbon material. Carbonization: The first step involves heating the precursor in an inert atmosphere to high temperatures (typically 400-800 °C). This process drives off volatile components and converts the organic material into a solid char, forming a rudimentary porous structure. Activation: This is the crucial step that develops the high surface area and porosity. Activation can be achieved through two primary methods: Physical Activation: The carbonized char is heated in the presence of activating agents like steam or carbon dioxide at elevated temperatures (800-1100 °C). These agents gasify the carbon, selectively etching away pore walls and creating a highly developed pore network. Chemical Activation: The precursor is impregnated with a chemical activating agent (e.g., phosphoric acid, zinc chloride, potassium hydroxide) before or during carbonization. These agents facilitate dehydration and carbonization at lower temperatures and can also react with the carbon to open up pores and create a larger surface area. Characterization Techniques: Understanding the properties of synthesized carbonaceous adsorbents is vital for optimizing their performance. Key characterization techniques include: Nitrogen Adsorption-Desorption Isotherms (BET Method): This is the cornerstone technique for determining the specific surface area, pore volume, and pore size distribution of porous materials. The shape of the isotherm provides valuable information about the pore structure. Mercury Porosimetry: This method is used to measure the volume and distribution of larger pores (mesopores and macropores) by forcing mercury into the pores under increasing pressure. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM): These techniques provide visual information about the morphology and microstructure of the carbon materials. X-ray Diffraction (XRD): XRD is used to study the crystalline structure and phase composition of carbon materials, distinguishing between amorphous and graphitic regions. Fourier-Transform Infrared Spectroscopy (FTIR): FTIR is employed to identify and quantify the presence of various surface functional groups on the carbon adsorbents. X-ray Photoelectron Spectroscopy (XPS): XPS provides elemental composition and chemical state information of the surface, particularly useful for characterizing surface functional groups and their distribution. Applications of Carbonaceous Adsorbents The exceptional adsorption capabilities of carbons have led to their widespread adoption in a multitude of applications, addressing critical environmental, industrial, and domestic needs. Water Treatment: Activated carbons are extensively used for the removal of organic pollutants, including pesticides, herbicides, chlorinated hydrocarbons, and taste- and odor-causing compounds from drinking water and wastewater. They are also effective in decolorization processes and the removal of heavy metals. Air Purification: In the gaseous phase, activated carbons are employed for the removal of volatile organic compounds (VOCs), odor control in industrial emissions and domestic environments, and the purification of respiratory air. They are also crucial in gas masks and respirators for protection against toxic gases. Industrial Processes: Decolorization and Purification: In the food and beverage industry, activated carbons are used to decolorize sugar, edible oils, and alcoholic beverages. They are also vital in the pharmaceutical industry for the purification of drug intermediates and active pharmaceutical ingredients. Catalysis and Catalyst Supports: The high surface area and tunable surface chemistry of carbons make them excellent supports for metal catalysts. They can also act as catalysts themselves in certain reactions. Separations and Recoveries: Activated carbons are used for the recovery of valuable solvents from industrial exhaust streams and for the separation of gases, such as in the production of oxygen and nitrogen from air. Gold Recovery: In the mining industry, activated carbons are widely used in the Merrill-Crowe process and direct carbon-in-pulp methods for the adsorption of gold cyanide complexes from ore slurries. Medical and Pharmaceutical Applications: Beyond purification, specially prepared carbons are used in medical applications such as hemodialysis and enterosorption for the removal of toxins from the bloodstream and gastrointestinal tract. Energy Storage: Recent research has explored the use of carbons in supercapacitors and battery electrodes due to their high surface area and electrical conductivity. Future Directions and Challenges While the utility of carbonaceous adsorbents is well-established, ongoing research aims to further enhance their performance and expand their applications. Key areas of focus include: Development of Novel Carbon Structures: Synthesis of carbons with tailored pore architectures, hierarchical porosity, and surface functionalities to optimize adsorption for specific pollutants or processes. Surface Modification and Functionalization: Creating chemically modified carbons with enhanced selectivity for challenging adsorbates, such as specific heavy metal ions or complex organic molecules. Regeneration and Reusability: Developing more efficient and cost-effective methods for the regeneration of spent activated carbons to improve their sustainability and reduce operational costs. Valorization of Waste Biomass: Exploring new and innovative ways to convert diverse waste biomass streams into high-performance carbonaceous adsorbents. Advanced Characterization and Modeling: Utilizing sophisticated analytical techniques and computational modeling to gain a deeper understanding of adsorption mechanisms at the molecular level. In conclusion, adsorption by carbons represents a vital and dynamic field. The ability to tailor the structure and surface chemistry of these remarkable materials, coupled with their inherent adsorption prowess, ensures their continued relevance and expansion into new frontiers of scientific inquiry and technological innovation.

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

“Adsorption by Carbons”这个书名,简洁明了,直击我作为一名致力于可持续能源和环境技术研究者的核心关注点。碳材料,特别是以其多孔结构和可调控的表面性质,在能源存储(如超级电容器)和环境治理(如CO2捕获)方面都扮演着至关重要的角色。我对这本书的期待,首先在于它能否全面而深入地介绍不同制备方法下形成的碳材料,例如,高温炭化与活化过程中的温度、时间、气氛等参数如何精确调控最终材料的孔隙结构(微孔、介孔、大孔)和表面化学特性(极性、官能团等)。我尤其关注那些能够产生高比表面积、大孔容且孔径分布均匀的碳材料的制备技术,因为这些特性是实现高效吸附的基础。此外,书中对于各种碳材料(如活性炭、碳气凝胶、碳纤维、石墨烯、碳纳米管及其衍生物)的吸附性能进行系统性比较,并分析不同材料在不同吸附体系(如气体、液体、离子)下的适用性,将对我非常有启发。我希望能看到书中对特定应用场景下的吸附机理进行深入剖析,例如,在CO2捕获过程中,碳材料是如何通过物理吸附或化学吸附与CO2分子结合的?吸附过程中,材料的孔隙结构和表面官能团起到了怎样的关键作用?是否会涉及如物理吸附的范德华力,以及表面官能团对吸附能的贡献?我还对书中关于吸附动力学和热力学模型在碳材料吸附研究中的应用非常感兴趣。理解吸附速率和吸附平衡,对于设计和优化吸附过程至关重要。例如,如何选择合适的模型来描述吸附过程,以及如何利用这些模型来预测不同条件下吸附容量和吸附速率?这本书是否会涵盖一些关于碳材料吸附剂在实际应用中遇到的挑战,例如吸附剂的稳定性和再生问题,以及相应的解决方案?

评分

“Adsorption by Carbons”这个书名,让我瞬间回想起大学时期在实验室里与各种碳材料打交道的日子。我对碳材料作为吸附剂的潜力和多功能性一直深感着迷,尤其是在环境修复和资源回收领域。我非常期待这本书能够为我提供一个全面而深入的视角,来理解碳材料吸附的科学原理以及其在不同领域的应用。我希望书中能够详细介绍各种不同形态的碳材料,例如,传统活性炭的制备、表征及其在吸附水质污染物(如有机物、重金属)方面的应用。同时,我也对新型碳材料,如石墨烯、碳纳米管、碳纤维等,在气体吸附(如CO2捕获、H2储存)、溶液相吸附(如染料、药物分子)以及更精细的分离任务中的表现充满兴趣。我期待书中能够深入探讨这些材料的结构与性能之间的关系,例如,材料的比表面积、孔隙分布、表面官能团以及π电子系统如何影响其对不同吸附质的亲和力。此外,书中对吸附机理的深入分析也是我关注的重点。我想了解,吸附过程是主要受物理吸附(如范德华力)还是化学吸附(如化学键合)驱动?吸附过程中是否存在竞争吸附,以及如何通过调控材料性质来提高目标吸附物的选择性?我希望书中能够包含一些前沿的研究进展,例如,如何利用碳材料作为催化剂载体,通过吸附-催化联用技术来高效去除污染物。我还对书中关于吸附剂再生和循环利用的技术非常感兴趣。作为一种可持续的解决方案,能够高效、经济地再生吸附剂是其大规模应用的关键。因此,书中对于不同再生技术(如热再生、化学再生、电化学再生等)的介绍和比较,将对我非常有价值。

评分

“Adsorption by Carbons”——书名本身就传递出一种对材料科学和环境工程交叉领域的深刻洞察。我是一名对绿色化学和可持续材料发展充满热情的科研工作者,碳材料凭借其独特的结构和可设计性,在吸附分离领域展现出巨大的潜力。我非常期待这本书能够为我提供一个系统性的知识框架,深入理解碳材料的制备、表征以及吸附性能。我希望书中能够详尽地介绍各种主流的碳材料制备方法,例如,通过生物质炭化、化学气相沉积、模板法等技术如何获得不同孔径分布、高比表面积的碳材料。我对碳材料的表面化学性质如何影响吸附行为也充满好奇。书中是否会深入探讨表面官能团(如羟基、羧基、氨基、酚羟基等)的引入和调控,如何影响材料对不同极性、不同尺寸吸附质的选择性吸附?我特别关注那些能实现高效气体分离(如CO2/N2、H2/CH4)或液相污染物去除(如重金属离子、有机染料)的碳材料。我也希望书中能包含一些关于吸附动力学和热力学的理论分析,例如,利用Langmuir、Freundlich等模型来拟合吸附等温线,以及利用准一级、准二级动力学模型来解释吸附速率控制步骤。这些理论分析不仅有助于我们理解吸附过程的本质,更能为实际工程应用提供指导。此外,我非常期待书中能涵盖一些关于碳材料吸附剂在实际应用中面临的挑战,例如,在复杂体系中吸附剂的稳定性、抗毒性以及再生过程中的效率损失等问题,并提供相应的解决方案或研究方向。对新型碳材料(如MOF衍生的碳材料、石墨烯泡沫等)在吸附领域的最新进展的介绍,也将是我非常看重的内容。

评分

这本书的书名叫做“Adsorption by Carbons”,光是这个书名就足以勾起我对碳材料吸附性质的浓厚兴趣。我一直对材料科学领域,特别是功能性材料的开发和应用充满好奇,而碳材料以其独特的结构和丰富的表面性质,在吸附领域扮演着至关重要的角色。从活性炭在水处理和空气净化中的广泛应用,到石墨烯、碳纳米管等新型碳材料在催化、储能等方面的巨大潜力,都让我对“Adsorption by Carbons”这本书的内容充满了期待。我猜想,这本书不仅会详细介绍各种碳材料的制备方法,更会深入探讨它们的微观结构如何影响吸附性能,比如孔隙结构、表面官能团、比表面积等关键因素。我想,书中或许会涵盖理论模型,例如Langmuir吸附模型、Freundlich吸附模型等,来解释吸附过程的机理。同时,对于实际应用,如污染物去除、气体分离、药物递送等方面,这本书肯定也会给出详实的案例分析和研究进展。我特别希望能看到关于碳材料表面改性技术的内容,因为这通常是提升吸附容量和选择性的重要手段。例如,如何通过化学接枝、等离子体处理等方法,在碳材料表面引入特定的官能团,以增强其对特定分子的吸附能力。此外,我也关注到碳材料在环境修复领域的应用,比如吸附重金属离子、有机污染物等,这本书是否会详细阐述这些方面的最新研究成果,以及不同碳材料在应对这些挑战时的优劣势,这是我非常期待的部分。总而言之,“Adsorption by Carbons”这个书名所蕴含的知识深度和广度,让我相信它会是一本非常值得深入研读的著作,能够极大地拓宽我对碳材料吸附科学的理解,并为我未来的研究提供宝贵的灵感和指导。

评分

“Adsorption by Carbons”这个书名,简练而精准地指向了我一直以来十分关注的材料科学分支——基于碳材料的吸附技术。我的研究方向触及了环境工程以及精细化学品的制备,而在这两个领域,高效、选择性的吸附材料都扮演着核心角色。我深信,这本书将成为我理论知识和实际操作的重要参考。我希望书中能细致地剖析不同炭化和活化工艺(如高温炭化、水蒸气活化、化学活化等)如何精确地塑造碳材料的微观结构,特别是孔隙网络的形成,因为这些结构特征直接决定了吸附剂的表面积、孔容以及孔径分布,从而影响其对不同尺寸和极性分子的吸附能力。比如,对于小分子气体(如CO2、H2)的吸附,超微孔结构可能至关重要;而对于大分子有机污染物的吸附,介孔或大孔结构则更为有利。此外,我还对书中关于碳材料表面化学性质的讨论非常感兴趣。碳材料表面可以负载各种官能团,如羧基、羟基、酚羟基、氨基等,这些官能团的引入不仅可以改变碳材料的表面电荷和亲疏水性,更能提供特定的吸附位点,增强对目标吸附物的亲和力。我期待书中能够详细介绍这些表面修饰技术,并提供具体的实例,说明如何通过优化表面官能团来提高吸附容量和选择性。例如,在处理含重金属离子的废水时,如何通过引入含氮或含硫的官能团来增强对金属离子的螯合吸附能力?在气体分离领域,又如何通过修饰碳材料表面,使其对某种特定气体具有高度的亲和力,从而实现高效分离?我对书中可能包含的先进表征技术(如BET比表面积测定、孔径分布分析、FTIR、XPS、TEM等)及其在理解吸附机理中的作用也寄予厚望,这些技术能够为我们提供直观的证据,来验证理论模型的合理性。

评分

读到“Adsorption by Carbons”这本书的书名,我脑海中立刻浮现出各种形态各异的碳材料,它们像是无数微小的海绵,贪婪地吸收着周围的物质。我对这个领域的好奇心由来已久,尤其是在关注环境科学和可持续发展议题时,碳材料作为一种多功能、可再生且性能优越的吸附剂,其作用是不可忽视的。我期待这本书能够深入浅出地揭示碳材料吸附的奥秘,从基础的物理化学原理出发,详细阐述各种碳源(如煤、木材、生物质)如何转化为具有特定吸附性能的炭,并介绍诸如活化、改性等关键制备工艺。我想,书中应该会详细介绍不同类型的碳材料,例如活性炭、碳分子筛、石墨烯、碳纳米管、碳纤维等,以及它们在结构、表面化学性质和吸附性能上的差异。我很想知道,针对不同的吸附对象——无论是气体分子、液相污染物还是特定离子——哪种碳材料的吸附效果最佳,以及背后的科学原理是什么。此外,书中对吸附动力学和热力学的讨论也是我非常期待的。理解吸附过程的速率限制因素以及吸附过程是吸热还是放热,对于优化吸附过程、设计高效吸附系统至关重要。例如,对于快速吸附需求的场景,如何选择或改性碳材料以缩短吸附时间?对于需要高选择性的分离任务,又该如何通过调控碳材料的孔径分布或表面化学性质来实现?这本书是否会提供这些问题的解决方案和前沿的研究思路?我还对碳材料在吸附过程中的再生和循环利用方面的内容抱有浓厚的兴趣。作为一种可持续的解决方案,能够高效、经济地再生吸附剂是其大规模应用的关键。因此,书中对于不同再生技术(如热再生、化学再生、电化学再生等)的介绍和比较,将对我非常有价值。

评分

“Adsorption by Carbons”——仅仅是这个书名,就已经让我联想到无数次的实验过程和理论推导。作为一名化学工程专业的学生,我一直对多孔材料在分离和纯化过程中的应用抱有浓厚的兴趣,而碳材料无疑是其中最耀眼的一类。我期待这本书能为我提供一个扎实的理论基础,让我能够理解不同碳材料(如活性炭、炭黑、石墨烯、碳纳米管等)的结构特征,以及这些结构特征如何影响它们对特定物质的吸附能力。我希望书中能够详细介绍各种碳材料的制备工艺,例如,如何通过控制炭化温度、活化剂种类和活化条件,来精确调控材料的孔隙结构,包括微孔、介孔和大孔的比例,以及比表面积的大小。对于化学修饰方面,我也充满了好奇。例如,如何在碳材料表面引入特定的官能团,如羧基、氨基、羟基等,以增强其对目标吸附物的选择性和吸附容量。我希望书中能提供一些具体的实例,比如,如何利用表面修饰的碳材料来高效吸附水体中的重金属离子,或者从气体混合物中选择性地分离出某种特定的气体。此外,我也关注到吸附过程的动力学和热力学。这本书是否会详细介绍诸如Langmuir、Freundlich、Temkin等吸附等温线模型,以及它们在描述碳材料吸附行为中的适用性?对于吸附动力学,是否会涉及准一级、准二级动力学模型,以及它们在解释吸附速率控制步骤方面的作用?了解这些模型,不仅有助于我们理解吸附机理,更能指导我们在实际应用中优化吸附工艺。我还希望书中能够涵盖一些关于碳材料在实际应用中的挑战和机遇,比如吸附剂的稳定性和再生问题,以及如何开发更具成本效益和环境友好的吸附材料。

评分

“Adsorption by Carbons”这个书名,一下子就抓住了我对多孔材料和分离科学的兴趣点。在我看来,碳材料之所以能在吸附领域占据如此重要的地位,很大程度上源于其结构的可设计性和表面化学性质的多样性。我对这本书的期待,首先在于它能否提供一个系统性的框架,来梳理和介绍不同种类碳材料的吸附特性。我期望书中会详细介绍活性炭,作为一种经典的吸附材料,其制备、改性以及在饮用水净化、空气过滤等方面的应用细节。同时,我也非常关注新型碳材料,比如石墨烯、碳纳米管、富勒烯衍生物等,它们凭借其独特的二维或一维结构,在气体吸附(如氢气、甲烷、二氧化碳)、超临界流体吸附以及高性能分离膜等领域展现出巨大的潜力。我希望书中能深入探讨这些新型碳材料的制备方法,以及它们在结构上的优势如何转化为优异的吸附性能。例如,石墨烯的高比表面积和可调控的层间距,是否使其成为吸附大分子物质的理想载体?碳纳米管的内腔和外表面,是否能够实现对不同气体的选择性吸附?书中对于吸附机理的深入探讨也是我所看重的。我想了解,吸附过程是纯粹的物理吸附,还是会伴随着化学吸附?吸附过程中是否会发生体积膨胀或结构变化?这些基础的科学问题,对于我们理解吸附现象的本质、开发更高效的吸附材料具有指导意义。我特别希望书中能包含一些计算模拟和理论分析的内容,比如密度泛函理论(DFT)计算,来预测碳材料对不同分子的吸附能和吸附模式。这样的理论支撑,能够帮助我们更深入地理解实验结果,并指导材料的设计。

评分

“Adsorption by Carbons”——这个书名,犹如一把钥匙,瞬间打开了我对碳材料吸附世界的探索之门。作为一名在化工领域深耕多年的工程师,我深知高效吸附剂在分离、提纯和环境治理中的关键作用,而碳材料以其独特的优势,一直是我的关注焦点。我期待这本书能为我提供一个全面而深入的知识体系,让我能够系统地理解不同类型碳材料的制备方法、结构特点以及吸附性能。我希望书中能够详细介绍传统活性炭的制备工艺,包括不同炭化和活化方法(如水蒸气活化、磷酸活化)如何影响其孔径分布和比表面积,以及其在水处理、空气净化等领域的广泛应用。同时,我也对新兴的碳材料,如石墨烯、碳纳米管、碳纤维以及各种多孔碳材料,在气体吸附(如CO2捕获、H2储存)、液相吸附(如药物分子、染料)以及选择性分离等方面展现出的巨大潜力充满兴趣。我希望书中能够深入剖析这些新材料的结构与吸附性能之间的构效关系,例如,比表面积、孔径分布、表面官能团以及π电子系统等因素如何影响材料对特定分子的亲和力。此外,书中对吸附机理的深入探讨也是我非常期待的部分。我想了解,吸附过程是单纯的物理吸附,还是会涉及到化学吸附?吸附过程中是否会发生竞争吸附,以及如何通过设计材料来增强对目标吸附物的选择性?我尤其希望书中能够包含一些关于吸附动力学和热力学的理论模型,例如,Langmuir、Freundlich等吸附等温线模型,以及准一级、准二级动力学模型,这些模型对于理解吸附过程的速率和平衡具有重要意义,也能为实际工艺设计提供指导。

评分

“Adsorption by Carbons”这个书名,直观地揭示了本书的核心内容,也触动了我对材料科学领域中一个极具吸引力的方向的关注。作为一名对环境科学和能源技术都有浓厚兴趣的读者,我深信碳材料在吸附分离领域扮演着不可或缺的角色。我期待这本书能为我提供一个系统性的学习平台,让我能够深入了解碳材料吸附的原理、制备技术及其在各个领域的应用。我希望书中能够详细介绍不同碳源(如煤、生物质、高分子材料)如何通过炭化和活化过程转化为具有优异吸附性能的碳材料,并阐述各种活化方法(如物理活化、化学活化)对最终材料的孔隙结构、比表面积和表面化学性质所产生的影响。我尤其对书中关于不同类型碳材料(如活性炭、碳分子筛、石墨烯、碳纳米管、碳纤维、多孔碳凝胶等)的吸附性能进行详细比较和分析的内容抱有很高的期望。我希望能够了解到,在不同的吸附体系(如气体吸附、液相吸附、离子吸附)中,哪种碳材料表现出最佳的吸附容量和选择性,以及背后的科学原理是什么。例如,对于CO2的捕获,高比表面积和合适的孔径分布是关键;对于水体中的重金属离子,引入特定的表面官能团以增强螯合作用则至关重要。此外,书中对吸附机理的深入探讨也是我关注的重点。我想了解,吸附过程是主要由范德华力驱动的物理吸附,还是会涉及到化学键合的化学吸附?吸附过程中是否存在竞争吸附,以及如何通过材料设计来提高吸附剂对目标吸附物的选择性?我非常希望书中能够包含一些关于吸附动力学和热力学模型在碳材料吸附研究中的应用,例如,利用Langmuir、Freundlich等模型来拟合吸附等温线,以及利用准一级、准二级动力学模型来解释吸附速率控制步骤。这些理论分析不仅有助于我们理解吸附过程的本质,更能为实际工程应用提供指导。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有