Technical Mathematics

Technical Mathematics pdf epub mobi txt 电子书 下载 2026

出版者:John Wiley & Sons Inc
作者:Calter, Paul/ Calter, Michael A.
出品人:
页数:640
译者:
出版时间:2006-9
价格:$ 196.34
装帧:HRD
isbn号码:9780471695936
丛书系列:
图书标签:
  • 数学
  • 技术数学
  • 工程数学
  • 应用数学
  • 高等数学
  • 计算数学
  • 理工科
  • STEM
  • 数学工具
  • 公式手册
想要找书就要到 小哈图书下载中心
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This invaluable book is renowned for its fully worked examples and numerous applications. Concepts are presented either graphically, analytically, or numerically (sometimes using more than one approach) depending on which seems the most appropriate to make the material clear and easy to understand. Technology is also fully integrated into problem sets and examples, providing a real-world perspective. And the authors encourage readers to begin the problem solving process by estimating the solution and checking their work by examining their answers for "reasonableness".

好的,以下是一份为您的图书《Technical Mathematics》量身定制的、不包含任何其内容的图书简介,力求详尽且自然: 深入理解复杂世界的基石:现代工程与科学的数学驱动力 一部面向未来实践者的权威指南,专注于将纯粹的数学概念转化为解决现实世界工程与科学难题的强大工具。 在当今高度依赖技术革新的时代,精湛的工程设计、尖端的科学研究以及高效的工业流程,无一不建立在坚实而灵活的数学基础之上。本书《Technical Mathematics》并非传统的纯理论数学教材,它是一座精心构建的桥梁,一端连接着严谨的数学原理,另一端则直达复杂的实际应用场景。我们深知,对于工程师、技术专家、物理学家以及数据科学家而言,理解“如何使用”数学,往往比单纯记住公式更为关键。 本书的编写旨在培养读者一种“工程思维”下的数学应用能力。我们摒弃了不切实际的理论冗余,专注于那些在现代工业、电子电气、机械制造、土木建筑乃至新兴的计算科学中,被反复证明是不可或缺的核心数学工具。 结构与核心内容概览:构建坚实的知识体系 本书的编排遵循从基础到高级、从抽象到具体的渐进式学习路径,确保读者能够平稳地掌握每一个关键领域的知识。 第一部分:数学基础的再巩固与深化 我们首先对高等数学中的关键先决条件进行了精确的梳理和强化。这不是简单的回顾,而是以工程视角重塑基础: 函数、图形与变换(Functions, Graphs, and Transformations): 深入探讨超越基础代数的函数类型,特别是指数、对数、三角函数在高频信号分析和衰减模型中的实际意义。重点解析参数方程和极坐标在描述旋转机械和电磁场时的优势。 线性代数的核心工具(Essential Linear Algebra): 矩阵运算被置于解决联立方程组(电路分析、结构平衡)和向量空间(运动学、力场)的实际背景中进行讲解。引入特征值和特征向量的概念,并立即关联到系统稳定性分析和主成分提取。 复数系统及其在交流电中的统治地位(Complex Numbers in AC Analysis): 对复数的几何和代数表示进行详尽阐述,随后立即将其应用于交流电路的阻抗计算、相位角分析以及滤波器的设计,使抽象的虚数运算拥有直观的物理图像。 第二部分:微积分:动态系统的语言 微积分是描述变化和优化的核心语言。本书对微分与积分的讲解,始终紧密围绕实际工程中的“速率”与“积累”问题展开: 微分学:变化率的精确量化(Differential Calculus): 从瞬时变化率的概念出发,详述导数的应用,包括优化问题(最小化材料成本、最大化效率)、相关变化率(如水箱注水速度与液面上升速度的关系),以及隐函数求导在复杂几何描述中的作用。 积分学:从面积到累积效应(Integral Calculus): 不仅关注定积分计算面积和体积,更侧重于其在物理学中的应用,如计算质心、惯性矩、功的累积、电荷总量等。对反常积分的讨论,则为无限过程和渐近分析奠定基础。 微分方程:建模现实的利器(Differential Equations): 这是本书的重点之一。我们系统性地介绍了常微分方程(ODE)的一阶和二阶线性与非线性方程的求解方法。重点演示如何将物理定律(牛顿第二定律、基尔霍夫定律)转化为可解的数学模型,并探讨稳态解与瞬态响应的物理意义。 第三部分:进阶分析工具与应用 为了应对更高级别的工程挑战,本书引入了更强大的分析工具集: 拉普拉斯变换(The Laplace Transform): 视为求解线性常微分方程的“手术刀”。本书详细展示了如何利用拉普拉斯变换将时域(time domain)的微分运算转化为频域(frequency domain)的代数运算,极大地简化了电路瞬态响应和控制系统分析的复杂性。 傅里叶分析导论(Introduction to Fourier Analysis): 探索如何将复杂的周期性信号分解为简单的正弦波叠加。这对于信号处理、振动分析以及谐波失真研究至关重要。对傅里叶级数和傅里叶变换的讲解,侧重于其实际的频谱解读。 多元微积分基础(Foundations of Multivariable Calculus): 介绍偏导数、梯度和方向导数,它们是理解空间中场量(如温度分布、电势)变化的关键。对多重积分的讲解,则直接服务于计算三维物体的质量和能量分布。 本书的独特教学哲学 《Technical Mathematics》的核心优势在于其应用驱动型的教学模式: 1. 问题先行(Problem-First Approach): 每一章节的引入都基于一个具体的、源自真实工程场景的问题(如“如何设计一个能快速稳定下来的控制系统?”或“如何精确计算一个不规则形状零件的重心?”),然后引出所需的数学工具。 2. 可视化与直觉构建(Visualization and Intuition Building): 我们大量采用图形化和几何解释来辅助抽象概念的理解。数学公式不再是孤立的符号串,而是对物理现象的精确描述。 3. 面向计算工具的结合(Integration with Computational Tools): 虽然本书强调手算和理解原理,但我们亦提供了关于如何利用现代计算软件(如MATLAB, Python的NumPy/SciPy库)进行复杂数值验证和求解的指导,确保读者在现代工作流程中游刃有余。 目标读者: 本书是工程学(电子、机械、航空航天、土木)、应用物理学、计算机工程、以及任何需要将数学严谨性与技术实践紧密结合的专业领域学生和专业人士的理想读物。掌握本书内容,意味着您将不仅懂得如何计算,更懂得为什么要这样计算,从而具备解决前沿技术挑战的数学内功。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 qciss.net All Rights Reserved. 小哈图书下载中心 版权所有