1 COMBINATORIAL ANALYSIS
1.1 Introduction
1.2 The Basic Prinaple of Counting
1.3 Permutations
1.4 Combinations
1.5 Multinomial Coefficients
1.6 The Number of Integer Solutions of Equations
2 AXIOMS OF PROBABILITY
2.1 Introduction
2.2 Sample Space and Events
2.3 Axioms of Probability
2.4 Some Simple Propositions
2.5 Sample Spaces Having Equally Likely Outcomes
2.6 Probability as a Continuous Set Function
2.7 Probability as a Measure of Belief
3 CONDITIONAL PROBABILITY AND INDEPENDENCE
3.1 Introduction
3.2 Conditional Probabilities
3.3 Bayes's Formula
3.4 Independent Events
3.5 P(.|F) Is a Probability
4 RANDOM VARIABLFS
4.1 Random Variables
4.2 Discrete Random Variables
4.3 Expected Value
4.4 Expectation of a Function of a Random Variable
4.5 Variance
4.6 The Bernoulli and Binomial Random Variables
4.7 The Poisson Random Variable
4.8 Other Discrete Probability Distributions
4.9 Expected Value of Sums of Random Variables
4.10 Properties of the Cumulative Distribution
5 CONTINUOUS RANDOM VARIABLES
5.1 Introduction
5.2 Expectation and Variance of Continuous Random Variables
5.3 The Uniform Random Variable
5.4 Normal Random Variables
5.5 Exponential Random Variables
5.6 Other Continuous Distributions
5.7 The Distribution of a Function of a Random Variable
6 JOINTLY DISTRIBUTED RANDOM VARIABLES
6.1 Joint Distribution Functions
6.2 Independent Random Variables
6.3 Sums oflndependent Random Variables
6.4 Conditional Distributions: Discrete
6.5 Conditional Distributions: Continuous Case
6.6 Order Statistics
6.7 Joint Probability Distribution of Functions of Random Variables
6.8 Exchangeable Random Variables
7 PROPERTIES OF EXPECTATION
7.1 Introduction
7.2 Expectation of Sums of Random Variables
7.3 Moments of the Number of Events that Occur
7.4 Covariance.Variance of Sums.and Correlations
7.5 Conditional Expectation
7.6 Conditional Expectation and Prediction
7.7 Moment Generating Functions
7.8 Additional Properties of Normal Random Variables
7.9 General Definition of Expectation
8 LIMIT THEOREMS
8.1 Introduction
8.2 Chebyshev's Inequality and the Weak Law of Large Numbers
8.3 The Central Limit Theorem
8.4 The Strong Law of Large Numbers
8.5 Other Inequalities
8.6 Bounding the Error Probability When Approximating a Sum of Independent Bernoulli Random Variables by a Poisson Random Variable
9 ADDITIONAL TOPICS IN PROBABILITY
9.1 The Poisson Process
9.2 Markov Chains
9.3 Surprise.Uncertainty, and Entropy
9.4 Coding Theory and Entropy
10 SIMULATION
10.1 Introduction
10.2 General Techniques for Simulating Continuous Random Variables
10.3 Simulating from Discrete Distributions
10.4 Variance Reduction Techrliques Answers to Seiected Problems
Solutions to Self—Test Problems and Exercises
Index
· · · · · · (
收起)